Advertisement

Journal of Ichthyology

, Volume 59, Issue 3, pp 307–316 | Cite as

Morphological Variability of Big-Scaled Redfin Tribolodon hakonensis (Cyprinidae)

  • N. S. RomanovEmail author
Article
  • 11 Downloads

Abstract

Morphological variability of seven characteristics of two forms of the big-scaled redfin Tribolodon hakonensis from ten reservoirs of the Far East is studied. Three indicators are analyzed—fluctuating asymmetry, geographical variability, and variability of characteristic values. Differences in the level of fluctuating asymmetry of T. hakonensis from different samples are due to different conditions of embryonic and early postembryonic development. The northern form differs from the southern one by a large average value of the sum of dispersions in all characteristics; this indicates a reduced stability of development. The geographical variability of T. hakonensis is manifested in six characteristics. Forms reliably differ from each other by average values of features, except for the number of infraorbital bones. The average values ​​of the coefficient of variation of characteristics vary considerably; the forms do not differ among themselves, and this indicator is noticeably higher only by the number of postorbital bones in the southern form. The largest number of significant differences in the dispersion of fluctuating asymmetry, average values ​​of characteristics, and coefficients of variation is most often observed when comparing between samples of the northern form, while that for the southern one is always minimal or absent altogether; this may be a result of sampling of the northern form from a much larger part of the area and a higher level of nucleotide variability in the northern form compared with the southern one.

Keywords:

big-scaled redfin Tribolodon hakonensis fluctuating asymmetry stability of development geographical variability variability of characteristics Far East 

Notes

REFERENCES

  1. 1.
    Atlas presnovodnykh ryb Rossii (Atlas of Freshwater Fishes of Russia), Reshetnikov, Yu.S., Ed., Moscow: Nauka, 2003, vol. 1.Google Scholar
  2. 2.
    Beardmore, J.A., Developmental stability in constant and fluctuating temperatures, Heredity, 1960, vol. 14, pp. 411–422.CrossRefGoogle Scholar
  3. 3.
    Berg, L.S., Ryby presnykh vod SSSR i sopredel’nykh stran (Fishes of Freshwater Fishes of Soviet Union and Adjacent Countries), Moscow: Akad. Nauk SSSR, 1949, part 2, pp. 469–925.Google Scholar
  4. 4.
    Biotest: integral’naya otsenka zdorov’ya ekosistem i otdel’nykh vidov (Biotest: Integral Assessment of the Health of Ecosystems and Single Species), Zakharova, V.M. and Klark, D.M., Eds., Moscow: Biotest, 1993.Google Scholar
  5. 5.
    Bogutskaya, N.G., Topography of channels of seismosensory system of Cyprinidae fishes of subfamilies Leuciscinae, Xenocyprinidae, and Cultrinae, Vopr. Ikhtiol., 1988, vol. 28, no. 3, pp. 367–382.Google Scholar
  6. 6.
    Bogutskaya, N.G., Morphological basis of the system of Cyprinidae fishes of subfamilies Leuciscinae, Vopr. Ikhtiol., 1990, vol. 30, no. 6, pp. 920–933.Google Scholar
  7. 7.
    Bogutskaya, N.G. and Naseka, A.M., Katalog beschelyustnykh i ryb presnykh i solonovatykh vod Rossii s nomenklaturnymi i taksonomicheskimi kommentariyami (Catalogue of Agnatha and Fishes of Fresh and Saline Waters of Russia with Nomenclature and Taxonomic Comments), Moscow: KMK, 2004.Google Scholar
  8. 8.
    Brykov, Vl.A., Polyakova, N.E., and Semina, A.V., Phylogeographic analysis reveals two periods of divergence in large-scaled redfin Tribolodon hakonensis (Pisces, Cyprinidae), Russ. J. Genet., 2011, vol. 47, no. 11, pp. 1324–1332.CrossRefGoogle Scholar
  9. 9.
    Churikov, A.A. and Sabitov, E.Kh., Additional data on the Far Eastern redfins, Vopr. Ikhtiol., 1982, vol. 22, no. 5, pp. 881–883.Google Scholar
  10. 10.
    Gavrenkov, Yu.I., Biology, morphology, and reserves of Far Eastern redins of genus Tribolodon in Southern Primorye, Izv. Tikhookean. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 1988, vol. 123, pp. 74–81.Google Scholar
  11. 11.
    Graham, J., Freeman, D.C., and Emlen, J., Antisymmetry, directional asymmetry and dynamic morphogenesis, Genetica, 1993, vol. 89, nos. 1–3, pp. 121–137.CrossRefGoogle Scholar
  12. 12.
    Gritsenko, O.F., Prokhodnye ryby ostrova Sakhalin (sistematika, ekologiya, promysel) (Migratory Fishes of Sakhalin Island: Systematics, Ecology, and Fishery), Moscow: VNIRO, 2002.Google Scholar
  13. 13.
    Gudkov, P.K., Polyakova, N.E., Semina, A.V., and Nazarkin, M.V., Comparative morphological analysis of big-scaled redfin Tribolodon hakonensis Günther, 1877 (Cyprinidae, Cypriniformes) from Sakhalin and southern Primorye, J. Ichthyol., 2010, vol. 50, no. 9, pp. 740–744.CrossRefGoogle Scholar
  14. 14.
    Ivankov, V.N., Luk’yanov, P.U., Mostovaya, N.V., and Rukhlova, G.F., Taxonomic role of morphological features of juveniles of two species of Far Eastern redfins, Biol. Morya (Vladivostok), 1984, no. 3, pp. 29–33.Google Scholar
  15. 15.
    Kurawaka, K., Cephalic lateral-line systems and geographical distribution of the genus Tribolodon (Cyprinidae), Jpn. J. Ichthyol., 1977, vol. 24, no. 3, pp. 167–175.Google Scholar
  16. 16.
    Lindberg, G.U. and Legeza, M.I., Ryby Yaponskogo morya i sopredel’nykh chastei Okhotskogo i Zheltogo morei (Fishes of the Sea of Japan and Adjacent Parts of the Okhotsk and Yellow Seas), Moscow: Nauka, 1965, part 2.Google Scholar
  17. 17.
    Palmer, A.R. and Strobeck, C., Fluctuating asymmetry: measurement, analysis, patterns, Ann. Rev. Ecol. Syst., 1986, vol. 17, pp. 391–421.CrossRefGoogle Scholar
  18. 18.
    Plokhinskii, N.A., Biometriya (Biometry), Moscow: Mosk. Gos. Univ., 1970.Google Scholar
  19. 19.
    Romanov, N.S., Fluctuating asymmetry in chum salmon, Oncorhynchus keta, from the Martime Province, J. Ichthyol., 1995, vol. 35, no. 9, pp. 171–182.Google Scholar
  20. 20.
    Ryazanova, I.N. and Polyakova, N.E., Differentiation of large-scaled redfin Tribolodon hakonensis (Pisces, Cyprinidae) in the Russian part of the range as inferred from the data of karyological analysis and PCR-RFLP analysis of mitochondrial DNA, Russ. J. Genet., 2012, vol. 48, no. 2, pp. 199–207.CrossRefGoogle Scholar
  21. 21.
    Semina, A.V., Molecular evolution and phylogenetic relations in two groups of fishes of families Mugilidae and Cyprinidae, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Vladivostok: Inst. Ma. Biol., Far Eastern Branch, Russ. Acad. Sci., 2008.Google Scholar
  22. 22.
    Semina, A.V., Polyakova, N.E., and Brykov, Vl.A., Genetic analysis identifies a cryptic species of Far Eastern daces of the genus Tribolodon, Dokl. Biol. Sci., 2006, vol. 407, no. 1, pp. 173–175.CrossRefGoogle Scholar
  23. 23.
    Shed’ko, S.V., Review of freshwater ichthyofauna, in Rastitel’nyi i zhivotnyi mir Kuril’skikh sotrovov (Flora and Fauna of the Kuril Islands), Vladivostok: Dal’nauka, 2002, pp. 118–134.Google Scholar
  24. 24.
    Sokal, R.R. and Rohlf, F.J., Biometry: The Principles and Practice of Statistics in Biological Research, San Francisco: W.H. Freeman, 1981.Google Scholar
  25. 25.
    Sviridov, V.V., Morphology and structure of scale of populations of redfins of genus Tribolodon in Primorye and Southern Sakhalin, Materialy II regional’noi konferentsii “Aktual’nye problemy morskoi biologii, ekologii i biotekhnologii” (Proc. II Reg. Conf. “Urgent Problems of Marine Biology, Ecology, and Biotechnology”), Vladivostok: Dal’nevost. Gos. Univ., 1999, pp. 135–136.Google Scholar
  26. 26.
    Sviridov, V.V. and Dyubanov, A.M., Specific infratemporal apparatus of Far Eastern redfins (Tribolodon, Cyprinidae), Materialy IV regional’noi konferentsii “Aktual’nye problemy morskoi biologii, ekologii i biotekhnologii” (Proc. IV Reg. Conf. “Urgent Problems of Marine Biology, Ecology, and Biotechnology”), Vladivostok: Dal’nevost. Gos. Univ., 2001, pp. 108–110.Google Scholar
  27. 27.
    Sviridov, V.V. and Ivankov, V.N., Topography of head seismosensory channels of juveniles of Far Eastern redfins Tribolodon (Cyprinidae) and its role for species diagnostics, Vopr. Ikhtiol., 2002, vol. 42, no. 3, pp. 418–420.Google Scholar
  28. 28.
    Tebb, G. and Thoday, J.M., Stability in development and relational balance of X-chromosomes in Drosophila melanogaster, Nature, 1954, vol. 174, pp. 1109–1110.CrossRefGoogle Scholar
  29. 29.
    Valentine, D.V. and Soule, M., Effect of p,p'-DDT on developmental stability of pectoral fin rays in the grunion, Leuresthes tenuis, Nat. Mar. Fish. Serv. Fish. Bull., 1973, vol. 71, pp. 921–925.Google Scholar
  30. 30.
    Zakharov, V.M., Assimetriya zhivotnykh (Asymmetry of the Animals), Moscow: Nauka, 1987.Google Scholar
  31. 31.
    Zakharov, V.M., Baranov, A.S., Borisov, V.I., et al., Zdorov’e sredy: metodika otsenki (Health of Environment: Evaluation Method), Moscow: Tsentr Ekol. Polit. Ross., 2000.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of SciencesVladivostokRussia

Personalised recommendations