Skip to main content
Log in

Embryonic and Larval Development and Some Reproductive-Biology Features of Dendrochirus zebra (Scorpaenidae)

  • Published:
Journal of Ichthyology Aims and scope Submit manuscript

Abstract—

Embryonic and larval development of zebra turkeyfish Dendrochirus zebra is described to the transition of the larvae to exogenous feeding. Mature sex products are obtained after double hormonal injections of the fish. A detailed, illustrated morphological description of developmental stages is presented. The changes of body pigmentation and number of muscular segments after hatching of the embryo from the egg envelope are recorded. Fertilized eggs are characterized by slightly irregular spherical shape; narrow perivitelline space; smooth, transparent, and unstructured egg envelope; and homogenous, transparent, and colorless yolk ~0.79 (0.74−0.81) mm in diameter. A single lipid droplet 0.15 (0.146−0.153) mm in diameter is located in the yolk. The droplet is colorless or with a yellowish pink tinge. The duration of the cellular cycle during the period of synchronous cleavage is approximately 27 min, and the duration of the incubation period is 25.5 h. At hatching, the prelarvae body length is 1.6–1.7 mm. The transition of the larvae to the exogenous feeding occurs at 2.33–2.42 mm body length by the fifth day after hatching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Aizen, J., Meiri, I., Tzchori, I., et al., Enhancing spawning in the grey mullet (Mugil cephalus) by removal of dopaminergic inhibition, Gen. Comp. Endocrinol., 2005, vol. 142, pp. 212–221.

    Article  CAS  PubMed  Google Scholar 

  2. Ballard, W.W., Morphogenetic movements in Salmo gairdneri Richandson, J. Exp. Zool., 1973a, vol. 184, no. 1, pp. 27–48.

    Article  Google Scholar 

  3. Ballard, W.W., A new fate map for Salmo gairdneri, J. Exp. Zool., 1973b, vol. 184, no. 1, pp. 49–73.

    Article  Google Scholar 

  4. Barannikova, I.A., Hormonal regulation of reproductive function of fishes with different ecology, in Biologicheskie osnovy rybovodstva. Aktual’nye problemy ekologicheskoi fiziologii i biokhimii ryb (Biological Principles of Fish Farming: Ecological Physiology and Biochemistry of Fishes), Moscow: Nauka, 1984, pp. 178–218.

  5. Chang, J.P. and Peter, K.E., Effects of pimozide and des Gly10 [d-Ala6] luteinizing hormone-releasing hormone ethylamide on serum gonadotropin concentrations germinal vesicle migration and ovulation in female gold fish, Carassius auratus, Gen. Comp. Endocrinol., 1983, vol. 52, no. 1, pp. 30–37.

    Article  CAS  PubMed  Google Scholar 

  6. Chang, H.-W., Sha, X.H.G., and Song, L., A description of the morphological characters of the eggs and larvae of the flathead fish, Platycephalus indicus, Oceanol. Limnol. Sin., 1980, vol. 11, no. 2, pp. 161–171.

    Google Scholar 

  7. Connell, A.D., Marine fish eggs and larvae from the east coast of South Africa, 2012. http://fisheggs-and-larvae.saiab.ac.za/.

  8. Copeland, P.A. and Thomas, P., Control of gonadotropin release in the Atlantic croaker (Micropogonias undulates): evidence for lack of dopaminergic inhibition, Gen. Comp. Endocrinol., 1989, vol. 74, pp. 474–483.

    Article  CAS  PubMed  Google Scholar 

  9. Davenport J., Oxygen and the developing eggs and larva of the lumpfish, Cyclopterus lumpus, J. Mar. Biol. Assoc. U.K., 1983, vol. 63, pp. 633–640.

    Article  Google Scholar 

  10. Dendrochirus zebra (Cuvier, 1829), in FishBase, Version 08/2016, Froese, R. and Pauly, D., Eds., 2016. http://www.fishbase.org.

  11. Detlaff, T.A., Cell divisions, duration of interkinetic states and differentiation in early stages of embryonic development, Adv. Morphogen., 1964, vol. 3, pp. 323–362.

    Article  Google Scholar 

  12. Detlaf, T.A., Some temperature-time patterns of embryonic development of poikilothermic animals, in Problemy eksperimental’noi embriologii (Problems of Experimental Embryology), Moscow: Nauka, 1977, pp. 269–289.

  13. Detlaf, T.A. and Detlaf, A.A., Dimensionless characteristic of development period in embryology, Dokl. Akad. Nauk SSSR, 1960, vol. 134, no. 1, pp. 199–202.

    Google Scholar 

  14. Dettlaff, T.A. and Dettlaff, A.A., On relative dimensionless characteristics of the development duration in embryology, Arch. Biol. (Liege), 1961, vol. 72, pp. l–16.

    Google Scholar 

  15. Dulčić, J., Jug-Dujaković, J., Bartulović, V., et al., Embryonic and larval development of large scaled scorpionfish Scorpaena scrofa (Scorpaenidae), Cybium, 2007, vol. 31, pp. 465–470.

    Google Scholar 

  16. Epler, P. and Bieniarz, K., Gonad maturation and hormonal stimulation of spawning in wels (Silurus glanis L.), Pol. Arch. Hygrobiol., 1989, vol. 36, no. 36, pp. 417–429.

    CAS  Google Scholar 

  17. Erickson, D.L. and Pikitch, E.K., A histological description of shortspine thornyhead, Sebastolobus alascanus, ovaries: structures associated with the production of gelatinous egg masses, Environ. Biol. Fish., 1993, vol. 36, pp. 273–282.

    Article  Google Scholar 

  18. Fishelson, L., Ethology and reproduction of the pteroid fishes found in the Gulf of Aqaba (Red Sea) especially Dendrochirus brachypterus (Cuvier) Pteroidae (Teleostei), Publ. Stat. Zool. Napoli, 1975, vol. 39, pp. 635–656.

    Google Scholar 

  19. Fishelson, L., Oogenesis and spawn-formation in the pigmy lion fish Dendrochirus brachypterus (Pteroidae), Mar. Biol., 1978, vol. 46, pp. 341–348.

    Article  Google Scholar 

  20. Glubokov, A.I., Regulation of reproductive function by biologically active substances and factors, in Biologicheskie osnovy marikul’tury (Biological Principles of Marine Culture), Dushkina, L.A., Ed., Moscow: VNIRO, 1998, pp. 205–215.

  21. Glubokov, A.I., Motloch, N.N., and Sedova, M.A., Effect of synthetic LHPH analogue and dopamine antagonists on the maturation of bream, Abramis brama L., Aquaculture, 1991, vol. 95, pp. 373–377.

    Article  CAS  Google Scholar 

  22. Godukhin, O.V. and Motlokh, N., Regulation of gonadotropic function of the pituitary in teleost fishes, Usp. Sovrem. Biol., 1992, vol. 112, no. 1, pp. 115–129.

    CAS  Google Scholar 

  23. Ignat’eva, G.M., Rannii embriogenez ryb i amfibii (sravnitel’nyi analiz vremennykh zkonomernostei razvitiya) (Early Embryogenesis of Fishes and Amphibians: Comparative Analysis of Temporal Regularities of Development), Moscow: Nauka, 1979.

  24. Kimmel, C.B., Ballard, W.W., Kimmel, S.R., et al., Stage of embryonic development of the zebrafish, Dev. Dyn., 1995, vol. 203, pp. 253–310.

    Article  CAS  PubMed  Google Scholar 

  25. Kimura, S., Tsukamoto, Y., and Mori, K., Early developmental stages of the scorpaenid fish, Scorpaena miostoma, reared in the laboratory, Jpn. J. Ichthyol., 1989, vol. 35, no. 4, pp. 434–439.

    Article  Google Scholar 

  26. King, W.V., Thomas, P., Harrell, R.M., et al., Plasma levels of gonadal steroids during final oocyte maturation of striped bass, Morone saxatilis L., Gen. Comp. Endocrinol., 1994, vol. 95, pp. 178–191.

    Article  CAS  PubMed  Google Scholar 

  27. Kumakura, N., Okuzawa, K., Gen, K., and Kagawa, H., Effects of gonadotropin-releasing hormone agonist and dopamine antagonist on hypothalamus-pituitary-gonadal axis of pre-pubertal female red seabream (Pagrus major), Gen. Comp. Endocrinol., 2003, vol. 131, pp. 264–273.

    Article  CAS  PubMed  Google Scholar 

  28. Lam, T.J., Application of endocrinology to fish culture, Can. J. Fish Aquat. Sci., 1982, vol. 13, pp. 111–137.

    Article  Google Scholar 

  29. Leis, J.M., Taxonomy and systematics of larval Indo-Pacific fishes: a review of progress since 1981, Ichthyol. Res., 2015, vol. 62, no. 1, pp. 9–28. https://doi.org/10.1007/s10228-014-0426-7

    Article  Google Scholar 

  30. Leis, J.M. and Carson-Ewart, B.M., The Larvae of Indo-Pacific Coastal Fishes: An Identification Guide to Marine Fish Larvae, Fauna Malesiana Handbooks vol. 2, Leiden: Brill, 2000.

  31. Lentz, T.L. and Trinkaus, J.P., A fine structural study of cytodifferentiation during cleavage, blastula, and gastrula stages of Fundulus heteroclitus, J. Cell Biol., 1967, vol. 32, pp. 121–138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Maricchiolo, G., Casell, G., Mancuso, M., and Genovese, L., Report of spontaneous spawning of captive red scorpionfish, Scorpaena scrofa (Linnaeus, 1758) with special attention on capture and broodstock management, Aquacult. Res., 2014, vol. 47, no. 2, pp. 677–680.

    Article  Google Scholar 

  33. Mito, S. and Uchida, K., On the egg development and hatched larvae of a scorpaenoid fish, Pterois lunulata Temminck et Schlegel, Sci. Bull. Fac. Agr. Kyushu Univ., 1958, vol. 16, no. 3, pp. 381–385.

    Google Scholar 

  34. Moser, H.G., Scorpaeniformes: Scorpaenidae, in The Early Stages of Fishes in the California Current Region, Moser, H.G., Ed., Lawrence: Allen Press, 1996, pp. 733–795.

    Google Scholar 

  35. Moyer, J.T. and Zaiser, M.J., Social organization and spawning behavior of the pteroine fish Dendrochirus zebra at Miyake-jima, Japan, Jpn. J. Ichthyol., 1981, vol. 28, pp. 52–69.

    Google Scholar 

  36. Munoz, M., Casadevall, M., and Bonet, S., The ovarian morphology of Scorpaena notata shows a specialized mode of oviparity, J. Fish Biol., 2002, vol. 61, no. 4, pp. 877–887.

    Article  Google Scholar 

  37. Myers, R.F., Micronesian Reef Fishes, Barrigada: Coral Graphics, 1991.

  38. Nelson, J.S., Grande, T.C., and Wilson, M.V.H., Fishes of the World, Hoboken, NJ: Wiley, 2016.

    Book  Google Scholar 

  39. Nemeth, S., Budahazi, A., Szucs, R., and Bercsenyi, M., Out of season artificial propagation of the black scorpionfish (Scorpaena porcus L.) in captivity, Medit. Aquacult. J., 2010, vol. 1, no. 1, pp. 28–35.

    Google Scholar 

  40. Novikov, G.G., Rost i energetika razvitiya kostistykh ryb v rannem ontogeneze (Growth and Energy of Development of Teleostean Fishes in Early Ontogenesis), Moscow: Editorial URSS, 2000.

  41. Orton, G.L., Early developmental stages of the California scorpionfish, Scorpaena guttata, Copeia, 1955, vol. 3, pp. 210–214.

    Article  Google Scholar 

  42. Pavlov, D.A. and Emel’yanova, N.G., Features of reproductive biology in two tropical fish species from the family Scorpaenidae, J. Ichthyol., 2007, vol. 47, no. 5, pp. 353–365.

    Article  Google Scholar 

  43. Pavlov, D.A. and Emel’yanova, N.G., Transition to viviparity in the order Scorpaeniformes: brief review, J. Ichthyol., 2013, vol. 53, no. 1, pp. 52–69.

    Article  Google Scholar 

  44. Poponov, S.Yu., Veselovzorov, S.I., Motlokh, N.N., and Goncharov, B.F., Dopamine regulation of ovulation and spermatogenesis in fish, in Ekologo-fiziologicheskie i toksikologicheskie aspekty i metody rybokhozyaistvennykh issledovanii (Ecological-Physiological and Toxicological Aspects and Fishery Studies), Moscow: VNIRO, 1990, pp. 102–117.

  45. Prat, F., Zanuy, S., and Carrillo, M., Effect of gonadotropin-releasing hormone analogue (GnRHa) and pimozide on plasma levels of sex steroids and ovarian development in sea bass (Dicentrarchus labrax L.), Aquaculture, 2001, vol. 198, pp. 325–338.

    Article  CAS  Google Scholar 

  46. Robinson, K.P., The role of the skin of early post-hatch turbot (Scophthalmus maximus L.) in osmoregulation, PhD Thesis, Stirling: Dep. Biol. Mol. Sci., Univ. Stirling, 1996.

  47. Rodriguez, J.M., Alemany, F., and Garcia, A., A Guide to the Eggs and Larvae of 100 Common Western Mediterranean Sea Bony Fish Species, Rome: UN Food Agric. Org., 2017.

    Google Scholar 

  48. Roskin, G.I. and Levinson, L.B., Mikroskopicheskaya tekhnika (Microscopic Technique), Moscow: Sovetskaya Nauka, 1957.

  49. Shao, K.T., Yang, R.S., Chen, K.C., and Lee, Y.S., An Identification Guide of Marine Fish Eggs from Taiwan, Taipei: Inst. Zool. Acad. Sin., 2001. http://fishdb.sinica.edu. tw/chi/fishegg/fisheggintro_e.php.

    Google Scholar 

  50. Trinkaus, J.P., The cellular basis of Fundulus epiboly. Adhesivity of blastula and gastrula cells in culture, Dev. Biol., 1963, vol. 7, pp. 513–532.

    Article  Google Scholar 

  51. Trinkaus, J.P., The yolk syncytial layer of Fundulus: its origin and history and its significance for early embryogenesis, J. Exp. Zool., 1993, vol. 265, pp. 258–284.

    Article  CAS  PubMed  Google Scholar 

  52. Uji, S., Kurokawa, T., Hashimoto, H., et al., Embryogenic staging of fugu, Takifugu rubripes, and expression profiles of aldh1a2, aldh1a3, and cyp26a1, Dev. Growth Diff., 2011, vol. 53, pp. 715–725.

    Article  Google Scholar 

  53. Wang, Y., Li, L., Cui, G., and Lu, W., Ontogenesis from embryo to juvenile and salinity tolerance of Japanese devil stinger Inimicus japonicus during early life stage, Springer Plus, 2013, vol. 2, no. 1, pp. 2–13.

    Article  Google Scholar 

  54. Washington, B.B., Moser, H.G., Laroche, W.A., and Richards, W.J., Scorpaeniformes: development, in Ontogeny and Systematics of Fishes, Am. Soc. Ichthyol. Herpetol. Spec. Publ. no. 1, Moser, H.G., et al., Eds., Lawrence: Allen Press, 1984, pp. 405–528.

  55. Wen, H.S. and Lin, H.R., Effects of exogenous neurohormone, gonadotropin (GtH) and dopaminergic drugs on the serum GtH content and ovulatory responsiveness of wild catfish, Silurus asorus (Linnaeus, 1758), Aquacult. Res., 2004, vol. 35, pp. 204–212.

    Article  CAS  Google Scholar 

  56. Yamashita, K., Chloride cells in the skin of the larvae red seabream Pagrus major, Jpn. J. Ichthyol., 1978, vol. 25, no. 3, pp. 211–215.

    Google Scholar 

  57. Zohar, Y., Harel, M., Hassin, S., and Tandler, A., Gilthead sea bream (Sparus aurata), in Broodstock Management and Egg and Larval Quality, Bromage, N.R. and Roberts, R.J., Eds., Oxford: Blackwell, 1995, pp. 94–117.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Shadrin.

Additional information

Translated by D. Pavlov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shadrin, A.M., Emel’yanova, N.G. Embryonic and Larval Development and Some Reproductive-Biology Features of Dendrochirus zebra (Scorpaenidae). J. Ichthyol. 59, 38–51 (2019). https://doi.org/10.1134/S0032945219010156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032945219010156

Keywords:

Navigation