Skip to main content
Log in

Rapid Gustatory Food Evaluation in Fish

  • Published:
Journal of Ichthyology Aims and scope Submit manuscript

Abstract

Fish have a well-developed sense of taste and can evaluate the palatability of grasped food and reject it if food do not match an expected quality. In the present study the food retention time was measured in Eurasian minnow Phoxinus phoxinus for agar pellets flavoured with amino acids (L-alanine, L-proline, L-phenylalanine; 0.1 M) by analysing video recordings. About 50% of the pellets were rejected within less than 145 ms. The shortest periods for pellet retention were within 42 ms. The mean values vary between 260 and 370 ms for pellets flavoured with amino acids but no significant difference was found between rejection time for pellets with palatable alanine, aversive phenylalanine and ineffective proline. It means that rejection time is not related to the palatability of grasped food item and indicates that there is a short-cut in the neurophysiological pathways that makes the fish reject the grasped food items with minimum delay. The fast rejection helps fish to decrease time for unproductive efforts and increase the possibilities to find valuable food after new search.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Atema, J., Chemical senses, chemical signals and feeding behavior in fish, in Fish Behavior and its Use in the Capture and Culture of Fishes, Bardach, J.E., Eds., Manila: Int. Center Living Aquat. Resour. Manage., 1980, pp. 57–101.

    Google Scholar 

  2. Bemis, W.E., Findeis, E.K., and Grande, L., An overview of Acipenseriformes, Environ. Biol. Fish., 1997, vol. 48, pp. 25–41.

    Article  Google Scholar 

  3. Breslin, P.A. and Huang, L., Human taste: peripheral anatomy, taste transduction, and coding, Adv. Otorhinolaryngol., 2006, vol. 63, pp.152–190.

    PubMed  Google Scholar 

  4. Coughlin, D.J. and Strickler, J.R., Zooplankton capture by a coral reef fish: an adaptive response to evasive prey, Environ. Biol. Fish., 1990, vol. 29, pp. 35–42.

    Article  Google Scholar 

  5. Essler, H. and Kotrschal, K., High resolution analysis of swim path patterns of intact and olfaction-deprived minnows (Phoxinus phoxinus) stimulated with food and potential predator odour, J. Fish Biol., 1994, vol. 45, pp. 555–567.

    Article  Google Scholar 

  6. Fehrer, J.R. and Raab, D., Reaction time to stimuli masked by metacontrast, in Information-Processing Approaches to Visual Perception, Haber, R.N., Eds., New York: Holt, Rinehart and Winston, 1969, pp. 117–121.

    Google Scholar 

  7. Finger, T.E., Feeding patterns and brain evolution in ostariophysean fishes, Acta Physiol. Scand., 1997, vol. 161, suppl. 638, pp. 59–66.

    Google Scholar 

  8. Frisch von, K., Über einen Schreckstoff der Fischhaut und seine biologische Bedeutung, Z. Vergl. Physiol., 1941, vol. 29, no. 1, pp. 46–145.

  9. Glaser, D., Zum Verhalten blinder Fische, Z. Tierpsychol., 1968, vol. 25, no. 6, pp. 648–658.

    CAS  PubMed  Google Scholar 

  10. Halpern, B.P., Constraints imposed on taste physiology by human taste reaction time data, Neurosci. Biobehav. Rev., 1986, vol. 10, no. 2, pp. 135–151.

    Article  CAS  PubMed  Google Scholar 

  11. Halpern, B.P. and Tapper, D.N., Taste stimuli: quality coding time, Science, 1971, vol. 171, pp. 1256–1258.

    Article  CAS  PubMed  Google Scholar 

  12. Kasumyan, A.O., Gustatory reception and feeding behavior in fish, J. Ichthyol., 1997, vol. 37, no. 1, pp. 72–86.

    Google Scholar 

  13. Kasumyan, A.O. and Marusov, E.A., Behavioral responses of intact and long-time olfactory deprived European minnows, Phoxinus phoxinus (Cyprinidae), to free amino acids, J. Ichthyol., 2003, vol. 43, no. 7, pp. 528–538.

    Google Scholar 

  14. Kasumyan, A.O. and Mikhailova E.S., Taste preferences and feeding behavior of three-spined stickleback Gasterosteus aculeatus of populations of basins of the Atlantic and Pacific oceans, J. Ichthyol., 2014, vol. 54, no. 7, pp. 453–475.

    Article  Google Scholar 

  15. Kasumyan, A.O. and Prokopova, O.M., Taste preferences and the dynamics of behavioral taste response in the tench Tinca tinca (Cyprinidae), J. Ichthyol., 2001, vol. 41, no. 8. pp. 640–653.

    Google Scholar 

  16. Kasumyan, A.O. and Sidorov, S.S., Individual variability of taste preferences in the minnow Phoxinus phoxinus, J. Ichthyol., 2002, vol. 42, suppl. 2, pp. 241–254.

    Google Scholar 

  17. Kasumyan, A.O. and Sidorov, S.S., Taste preferences of the brown trout Salmo trutta from three geographically isolated populations, J. Ichthyol., 2005, vol. 45, no. 7, pp. 111–123.

    Google Scholar 

  18. Kasumyan, A.O. and Sidorov, S.S., Behavior of food objects testing by taste in the carp Cyprinus carpio in the norm and at chronic anosmia, J. Ichthyol., 2010, vol. 50, no. 11, pp. 1043–1059.

    Article  Google Scholar 

  19. Kasumyan, A.O. and Sidorov, S.S., Effects of the long term anosmia combined with vision deprivation on the taste sensitivity and feeding behavior of the rainbow trout Parasalmo (=Oncorhynchus) mykiss, J. Ichthyol., 2012, vol. 52, no. 1, pp. 109–119.

    Article  Google Scholar 

  20. Kelling, S.N. and Halpern, B.P., Taste judgments and gustatory stimulus duration: simple taste reaction times, Chem. Sens., 1987, vol. 12, no. 4, pp. 543–562.

    Article  CAS  Google Scholar 

  21. Koch, C., The movie in your head, Sci. Am. Mind., 2005, vol. 16, pp. 58–63.

    Article  Google Scholar 

  22. Krause, J. and Ruxton, G.D., Living in Groups, Oxford: Oxford Univ. Press, 2002.

    Google Scholar 

  23. Magurran, A.E., The development of shoaling behavior in the European minnow, Phoxinus phoxinus, J. Fish Biol., 1986, vol. 29, suppl. A, pp. 159–169.

  24. Magurran, A.E., Acquired recognition of predator odor in the European minnow (Phoxinus phoxinus), Ethology, 1989, vol. 82, pp. 216–223.

    Article  Google Scholar 

  25. Magurran, A.E. and Pitcher, T.J., Foraging, timidity and shoal size in minnows and goldfish, Behav. Ecol. Sociobiol., 1983, vol. 12, no. 2, pp. 147–152.

    Article  Google Scholar 

  26. Magurran, A.E., Oulton, W., and Pitcher, T.J., Vigilant behaviour and shoal size in minnows, Z. Tierpsychol. Bd., 1985, vol. 67, pp. 167–178.

    Article  Google Scholar 

  27. Mikhailova, E.S. and Kasumyan, A.O., Taste preferences and feeding behavior in nine-spined stickleback (Pungitius pungitius) in three geographically distant populations, J. Ichthyol., 2015, vol. 55, no. 5, pp. 679–701.

    Article  Google Scholar 

  28. Mikhailova, E.S. and Kasumyan, A.O., Orosensory food testing in fish: chronology of behavior, Biol. Bull., 2016, vol. 43, no. 4, pp. 318–328.

    Article  Google Scholar 

  29. Nyberg, D.W., Prey capture in the largemouth bass, Am. Midl. Nat., 1971, vol. 86, no. 1, pp. 128–144.

    Article  Google Scholar 

  30. Pavlov, D.S. and Kasumyan, A.O., The structure of the feeding behavior of fishes, J. Ichthyol., 1998, vol. 38, no. 1, pp. 116–128.

    Google Scholar 

  31. Sasko, D.E., Dean, M.N., Motta, P.J., and Hueter, R.E., Prey capture behavior and kinematics of the Atlantic cownose ray, Rhinoptera bonasus, Zoology, 2006, vol. 109, pp. 171–181.

    Article  PubMed  Google Scholar 

  32. Schlegel, T. and Schuster, S., Small circuits for large tasks: high-speed decision-making in archerfish, Science, 2008, vol. 319, no. 5859, pp. 104–106.

    Article  CAS  PubMed  Google Scholar 

  33. Sibbing, F.A., Osse, J.W. M., and Terlouw, A., Food handling in the carp (Cyprinus carpio): its movement patterns, mechanisms and limitations, J. Zool., 1986, vol. 210, no. 2, pp. 161–203.

    Article  Google Scholar 

  34. Simon, S.A., de Araujo, I.E., Stapleton, J.R., and Nicolelis, M.A.L., Multisensory processing of gustatory stimuli, Chem. Percept., 2008, vol. 1, no. 1, pp. 95–102.

    Article  CAS  Google Scholar 

  35. Spector, A.C., Redman, R., and Garcea, M., The consequences of gustatory nerve transaction on taste-guided licking of sucrose and maltose in the rat, Behav. Neurosci., 1996, vol. 110, pp. 1096–1109.

    Article  CAS  PubMed  Google Scholar 

  36. Stapleton, J.R., Lavine, M.L., Wolpert, W.L., Nicolelis, M.A.L., and Simon, A.S., Rapid taste responses in the gustatory cortex during licking, J. Neurosci., 2006, vol. 26, no. 15, pp. 4126–4138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Travers, J.B., Dinardo, L.A., and Karimnamazi, H., Motor and premotor mechanisms of licking, Neurosci. Biobehav. Rev., 1997, vol. 21, pp. 631–647.

    Article  CAS  PubMed  Google Scholar 

  38. Uchida, N. and Mainen, Z.F., Speed and accuracy of olfactory discrimination in the rat, Nat. Neurosci., 2003, vol. 6, pp. 1224–1229.

    Article  CAS  PubMed  Google Scholar 

  39. Vinogradskaya, M.I., Mikhailova, E.S., and Kasumyan, A.O., Taste preferences, orosensory food testing, and sound production during feeding by the pearl gourami Trichopodus leerii (Osphronemidae), J. Ichthyol., 2017, vol. 57, no. 3, pp. 445–457.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Kasumyan.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasumyan, A.O., Mikhailova, E.S. Rapid Gustatory Food Evaluation in Fish. J. Ichthyol. 58, 916–926 (2018). https://doi.org/10.1134/S0032945218060073

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032945218060073

Keywords:

Navigation