Skip to main content
Log in

Histopathological Changes of Hepatorenal Toxicity Induced by Gentamicin in Killifish, Aphanius hormuzensis (Aphaniidae) and its Kidney Regeneration Through Nephron Neogenesis

  • Published:
Journal of Ichthyology Aims and scope Submit manuscript

Abstract

The histopathological changes in liver and kidney toxicity after induction by gentamicin are studied in killifish, Aphanius hormuzensis, and its kidney regeneration through nephron neogenesis is reported for the first time. The adult fish are subjected to nephrotoxic antibiotic, gentamicin, at a sub-lethal dose (10 µg/g), and their liver and kidney tissues are sampled daily for two weeks. Liver histopathology shows that this dosage causes hepatotoxicity effect. The hepatocytes are swollen and detached from each other. Moreover, the endothelial layer of blood vessels is damaged, and the appearance of melanomacrophage centers (MMCs) increases. The renal toxicity is detected in 10 h post injection, and the damage is observed in the epithelial layer of renal tubes. Renal damage is followed by cyst formation in 5 days post injection (dpi). The nephron neogenesis sign is detected by nephrogenic body formation in 7 dpi, and tubular segments of newly formed nephron is observed in 9 dpi. Gentamicin causes hepatorenal toxicity, and the kidney regenerates through nephron neogenesis in 10 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Al-Kenanny, E.R., Al-Hayaly, L.K., and Al-Badrany, A.G., Protective effect of Arabic gum on liver injury experimentally induced by gentamicin in mice, J. Kufa Vet. Med. Sci., 2012, vol. 3, no. 1, pp. 174–189.

    Google Scholar 

  2. Augusto, J., Smith, B., Smith, S., Robertson, J., and Reimschuessel, R., Gentamicin-induced nephrotoxicity and nephroneogenesis in Oreochromis nilotica, a tilapian fish, Dis. Aquat. Org., 1996, vol. 26, no. 1, pp. 49–58.

    Article  CAS  Google Scholar 

  3. Azevedo, A.S., Sousa, S., and Jacinto, A., An amputation resets positional information to a proximal identity in the regenerating zebrafish caudal fin, BMC Dev. Biol., 2012, vol. 12, no. 24, pp. 1–12.

    Article  Google Scholar 

  4. Behmer, O.A., Tolosa, E.M.C., and FreitasNeto, A.G., Manual De Técnicas Para Histologia Normal e Patológica, São Paulo: São Paulo Livraria Editora, 1976.

  5. Cormier, S.M., Neiheisel, T.W., Racine, R.N., and Reimschuessel, R., New nephron development in fish from polluted waters: a possible biomarker, Ecotoxicology, 1995, vol. 4, no. 3, pp. 157–168.

    Article  CAS  PubMed  Google Scholar 

  6. Ellet, F., and Lieschke, G.J., Zebrafish as a model for vertebrate hematopoiesis, Curr. Opin. Pharmacol., 2010, vol. 10, no. 5, pp. 1–8.

    Article  CAS  Google Scholar 

  7. Ellis, A.E., and De Sousa, M., Phylogeny of the lymphoid system. I. A study of the fate of circulating lymphocytes in place, Eur. J. Immunol., 1974, vol. 4, no. 5, pp. 338–43.

    Article  CAS  PubMed  Google Scholar 

  8. Fedorova, S., Miyamoto, R., Harada, T., Isogai, S., Hashimoto, H., Ozato, K., and Wakamatsu, Y., Renal glomerulogenesis in medaka fish, Oryzias latipes, Dev. Dyn., 2008, vol. 237, no. 5, pp. 2342–2352.

    Article  PubMed  Google Scholar 

  9. Hoppe, B., Pietsch, S., Franke, M., Engel, S., Groth, M., Platzer, M., and Englert, C., MiR-21 is required for efficient kidney regeneration in fish, BMC Dev. Biol., vol. 15, no. 43, pp. 1–10.

  10. Hrbek, T., and Meyer, A., Closing of the Tethys Sea and the phylogeny of Eurasian killifishes (Cyprinodontiformes: Cyprinodontidae), J. Evol. Biol., 2013, vol. 16, no. 1, pp. 17–36.

    Article  Google Scholar 

  11. Huth, M. E., Ricci, A.J., and Cheng, A.G., Mechanisms of aminoglycoside ototoxicity and targets of hair cell protection, Int. J. Otolaryngol., 2011, vol. 90, no. 10, pp. 1–19.

    Article  Google Scholar 

  12. Jeffrey, W.C., Roger, G.U., Philip, G.L., and Clay, T.C., Acute hepatocellular effects of erythromycin, gentamicin, and trospectomycin in the perfused rat liver: Lack of correlation between lamellar body induction potency and cytotoxicity, Pharmacol. Toxicol.,1988, vol. 62, no. 5, pp. 337–343.

    Article  Google Scholar 

  13. Kamel, M.A., and Hosny Abdel Fadil, I., Prevention of hepato-renal toxicity with vitamin E, vitamin C and their combination in gentamicin treated rats, Int. J. Pharm. Sci., 2015, vol. 5, no. 5, pp. 1289–1296.

    Google Scholar 

  14. Kang, C., Lee, D.Y., Hah, J.H., Heo, C.H., Kim, E., and Kim, J.S., Protective effects of Houttuynia cordata Thunb. on gentamicin-induced oxidative stress and nephrotoxicity in rats, Toxicol. Res., 2013, vol. 29, no. 1, pp. 61–67.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kim, Y., Nam, H.G., and Valenzano, D.R., The short-lived African turquoise killifish: an emerging experimental model for ageing, Dis. Models Mech., 2016, vol. 9, no. 2, pp. 115–129.

    Article  Google Scholar 

  16. Kovacs, E., Savopol, T., Iordache, M.M., Saplacan, L., Sobaru, I., Istrate, C., Mingeot-Leclercq, M.P., and Moisescu, M.G., Interaction of gentamicin polycation with model and cell membranes, Bioelectrochemistry, 2012, vol. 87, no. 1, pp. 230–235.

    Article  CAS  PubMed  Google Scholar 

  17. Kranz, H., Changes in splenic melano-macrophage centers of dab Limanda limanda during and after infection with ulcer disease, Dis. Aquat. Org., 1989, vol. 6, no. 1, pp. 167–173.

    Article  Google Scholar 

  18. Lin, F., Cordes, K., Li, L., Hood, L., Couser, W.G., Shankland, S.J., and Igarashi, P., Hematopoietic stem cells contribute to the regeneration of renal tubules after renal ischemia-reperfusion injury in mice, J. Am. Soc. Nephrol., 2003, vol. 14, no. 5, pp. 1188–1199.

    Article  PubMed  Google Scholar 

  19. Lin, F., Moran, A., and Igarashi, P., Intrarenal cells, not bone marrow-derived cells, are the major source for regeneration in postischemic kidney, J. Clin. Invest., 2005, vol. 115, no. 7, pp. 1756–1764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Masakazu, K., Yoshiko, E., and Masashi, E., Acquired resistance of Listeria monocytogenes in and escaped from liver parenchymal cells to gentamicin is caused by being coated with their plasma membrane, Microbes Infect., 2014, vol. 16, no. 3, pp. 237–243.

    Article  CAS  Google Scholar 

  21. McCampbell, K.K., and Winger, R.A., New tides: using zebrafish to study renal regeneration. New tides: using zebrafish to study renal regeneration, Transl. Res., 2014, vol. 163, no. 2, pp. 109–22.

    Article  CAS  PubMed  Google Scholar 

  22. Mochizuki, E., Fukuta, K., Tada, T., Harada, T., Watanabe, N., Matsuo, S., Hashimoto, H., Ozato, K., and Wakamatsu, Y., Fish mesonephric model of polycystic kidney disease in medaka (Oryzias latipes) pc mutant, Kidney Int., 2005, vol. 68, no. 1, pp. 23–34.

    Article  PubMed  Google Scholar 

  23. Nagai, J., Molecular mechanisms underlying renal accumulation of aminoglycoside antibiotics and mechanism-based approach for developing non-nephrotoxic aminoglycoside therapy, Yakugaku Zasshi, 2006, vol. 126, no. 5, pp. 327–335.

    Article  CAS  PubMed  Google Scholar 

  24. Nagai, J., Tanaka, H., Nakanishi, N., Murakami, T., and Takano, M., Role of megalin in renal handling of aminoglycosides, Am. J. Physiol. Renal Physiol., 2001, vol. 281, no. 2, pp. 337–344.

    Article  Google Scholar 

  25. Osafune, K., Takasato, M., Kispert, A., Asashima, M., and Nishinakamura, R., Identification of multipotent progenitors in the embryonic mouse kidney by a novel colony forming assay, Development, 2006, vol. 133, no. 1, pp. 151–161.

    Article  CAS  PubMed  Google Scholar 

  26. Pfefferli, C., and Jazwinska, A., The art of fin regeneration in zebrafish, Regeneration, 2015, vol. 2, no. 2, pp. 72–83.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Reichenbacher, B., Kamrani, E., Esmaeili, H.R., and Teimori, A., The endangered cyprinodont Aphanius ginaonis (Holly, 1929) from southern Iran is a valid species: evidence from otolith morphology, Environ. Biol. Fish., 2009, vol. 86, no. 1, pp. 507–521.

    Article  Google Scholar 

  28. Reimschuessel, R., A fish model of renal regeneration and development, ILAR J., 2001, vol. 42, no. 4, pp. 285–291.

    Article  CAS  PubMed  Google Scholar 

  29. Reimschuessel, R., Bennett, R.O., May, E.B., and Lipsky, M.M., Development of newly formed nephrons in, the goldfish kidney following hexachlorobutadiene-induced nephrotoxicity, Toxicol. Pathol., 1990, vol. 18, no. 1, pp. 32–38.

    Article  CAS  PubMed  Google Scholar 

  30. Reimschuessel, R., Chamie, S.J., and Kinnel, M., Evaluation of gentamicin-induced nephrotoxicosis in toadfish, J. Am. Vet. Med. Assoc., 1996, vol. 209, no. 1, pp. 137–139.

    CAS  PubMed  Google Scholar 

  31. Roberts, R.J., and Ellis, A.E., The anatomy and physiology of teleosts, in Fish Pathology, Philadelphia: W.B. Saunders, 2001, pp. 12–54.

    Google Scholar 

  32. Rookmaaker, M.B., Smits, A.M., van Tolboom, H., T., Wout, K., Martens, A.C., Goldschmeding, R., Joles, J.A., van Zonneveld, A.J., Grone, H.J., Rabelink, T.J., and Verhaar, M.C., Bone-marrow-derived cells contribute to glomerular endothelial repair in experimental glomerulonephritis, Am. J. Pathol., 2003, vol. 163, no. 2, pp. 553–562.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Salice, C.J., Rokous, J.S., Kane, A.S., and Reimschuessel, R., New nephron development in goldfish (Carassius auratus) kidneys following repeated gentamicin-induced nephrotoxicosis, Comp. Med., 2001, vol. 51, no. 1, pp. 56–59.

    CAS  PubMed  Google Scholar 

  34. Saunders, H.L., Oko, A.L., Scott, A.N., Fan, C.W., and Magor, B.G., The cellular context of AID expressing cells in fish lymphoid tissues, Dev. Comp. Immunol., 2010, vol. 34, no. 6, pp. 669–76.

    Article  CAS  PubMed  Google Scholar 

  35. Selimoglu, E., Aminoglycoside-induced ototoxicity, Curr. Pharm. Des., 2007, vol.13, no. 1, pp. 119–126.

    Article  CAS  PubMed  Google Scholar 

  36. Steinel, N.C., and Bolnick, D.I., Melanomacrophage centers as a histological indicator of immune function in fish and other poikilotherms, Front. Immunol., 2017, vol. 1, no. 8, pp. 827. doi 10.3389/fimmu.2017.00827

    Article  CAS  Google Scholar 

  37. Tavafi, M., and Ahmad, H., Effect of rosmarinic acid on inhibition of gentamicin induced nephrotoxicity in rats, Tissue Cell, 2011, vol. 43, no. 6, pp. 392–397.

    Article  CAS  PubMed  Google Scholar 

  38. Teimori, A., Schulz-Mirbach, T., Esmaeili, H.R., and Reichenbacher, B., Geographical differentiation of Aphanius dispar (Teleostei: Cyprinodontidae) from Southern Iran, J. Zool. Syst. Evol. Res., 2012a, vol. 50, no. 4, pp. 289–304.

    Article  Google Scholar 

  39. Teimori, A., Jawad, L.A.J., Al-Kharusi, L.H., Al-Mamry, J.M., and Reichenbacher, B., Late Pleistocene to Holocene diversification and historical zoogeography of the Arabian killifish (Aphanius dispar) inferred from otolith morphology, Sci. Mar., 2012b, vol. 76, no. 4, pp. 637–45.

    Google Scholar 

  40. Teimori, A., Motamedi, M., and Askari Hesni, M., Fish morphology and mitochondrial phylogeny reveal translocations of a native Aphanius Nardo, 1827 (Teleostei: Cyprinodontidae) in Iran, Iran. J. Ichthyol., 2016, vol. 3, no. 3, pp. 181–189.

    Google Scholar 

  41. Teimori, A., Esmaeili, H.R., Hamidan, N., and Reichenbacher, B., Systematics and historical biogeography of the Aphanius dispar species group (Teleostei: Aphaniidae) and description of a new species from Southern Iran, J. Zool. Syst. Evol. Res., 2018 (in press). doi 10.1111/jzs.12228

  42. Wagner, G.P., and Misof, B.Y., Evolutionary modification of regenerative capability in vertebrates: a comparative study on teleost pectoral fin regeneration, J. Exp. Zool. Ecol. Genet. Physiol., 1992, vol. 261, no. 1, pp. 62–78.

    CAS  Google Scholar 

  43. Wildekamp, R.H., A World of Killies: Atlas of the Oviparous Cyprinodontiform Fishes of the World, Vol. 1: The Genera Adamas, Adinia, Aphanius, Aphyoplatys and Aphyosemion, Houston: Am. Killifish Assoc., 1993.

    Google Scholar 

  44. Wright, P.A., Nitrogen excretion: three end products, many physiological roles, J. Exp. Biol., 1995, vol. 198, no. 2, pp. 273–281.

    CAS  PubMed  Google Scholar 

  45. Wojciech, L., and Vincent, L.P., Ternary complexes of gentamicin with iron and lipid catalyze formation of reactive oxygen species, ‎Chem. Res. Toxicol., 2005, vol. 18, no. 2, pp. 357–364.

    Article  CAS  Google Scholar 

  46. Zeinali, F., and Motamedi, M., The regeneration capacity of caudal fin in the common tooth-carp, Aphanius hormuzensis (Rüppell, 1829) (Teleostei: Cyprinodontidae), Int. J. Aquat. Biol., 2017, vol. 5, no. 2, pp. 321–327.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Motamedi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iranmanesh, A., Motamedi, M. Histopathological Changes of Hepatorenal Toxicity Induced by Gentamicin in Killifish, Aphanius hormuzensis (Aphaniidae) and its Kidney Regeneration Through Nephron Neogenesis. J. Ichthyol. 58, 932–938 (2018). https://doi.org/10.1134/S0032945218060048

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032945218060048

Keywords:

Navigation