Skip to main content
Log in

A Comparative Morphological Analysis of the Clonal Progeny from a Female Hybrid Sterlet Acipenser ruthenus × Kaluga A. dauricus (Acipenseridae): The Genetic and Modification Variability in a Number of Quantitative Morphological Traits

  • Published:
Journal of Ichthyology Aims and scope Submit manuscript

Abstract

The clonal progeny of a female hybrid sterlet Acipenser ruthenus × kaluga A. dauricus and the same-age backcross hybrids (sterlet × kaluga) × kaluga have been analyzed for variability in morphometric traits. The heritability indices have been inferred from the dispersion values obtained. It has been shown that the clonal progeny does not differ from the backcrosses by lower variability in morphological traits, which is explained by the manifestation of the phenomenon of the relationship between heterozygosity and stability of development. The low values of the heritability index estimated for most traits agree with the general idea of the high modification variability in measurable traits. The tendency of the traits having a diagnostic value to a higher heritability is hardly expressed in the material studied, which is possibly due to the small number of the analyzed characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ando, D., Mano, S., Koide, N., and Nakajima, M., Estimation of heritability and genetic correlation of number of abdominal and caudal vertebrae in masu salmon, Fish. Sci., 2008, vol. 74, no. 2, pp. 293–298.

    Article  CAS  Google Scholar 

  2. Angus, R.A. and Schultz, R.J., Clonal diversity in the unisexual fish Poeciliopsis monacha-lucida: a tissue graft analysis, Evolution, 1979, vol. 33, no. 1, pp. 27–40.

    PubMed  Google Scholar 

  3. Ayala, F.J. and Kiger, J.A., Modern Genetics, London: Benjamin Cummings, 1980.

    Google Scholar 

  4. Badrtdinov, O.A., Kovalev, K.V., Lebedeva, E.B., Vasil’eva, E.D., Recoubratsky, A.V., Grunina, A.S., Chebanov, M.S., and Vasil’ev, V.P., Entirely male gynogenetic offspring of Acipenser stellatus (Pisces, Acipenseridae), Dokl. Biol. Sci., 2008, vol. 423, no. 1, pp. 392–394.

    Article  CAS  PubMed  Google Scholar 

  5. Benzie, J.A.H., Kenway, M., and Trott, L., Estimates for the heritability of size in juvenile Penaeus monodon prawns from half-sib mattings, Aquaculture, 1997, vol. 152, nos. 1–4, pp. 49–53.

    Article  Google Scholar 

  6. Bezrukov, V.F., Heterozygosity, genotypic heterogeneity and quantitative characteristics in a population, Zh. Obshch. Biol., 1994, vol. 55, nos. 4–5, pp. 440–458.

    Google Scholar 

  7. Blanc, J.M. and Poisson, H., Genetic variation of body size, condition and pyloric caeca number in juvenile brown trout Salmo trutta L., Aquacult. Res., 2006, vol. 37, no. 6, pp. 637–642.

    Article  Google Scholar 

  8. Bolivar, R.B. and Newkirk, G.F., Response to within family selection for body weight in Nile tilapia (Oreochromis niloticus) using a single-trait animal model, Aquaculture, 2002, vol. 204, nos. 3–4, pp. 371–381.

    Article  Google Scholar 

  9. Bürger, R., The Mathematical Theory of Selection, Recombination, and Mutation, Chichester: Wiley, 2000.

    Google Scholar 

  10. Campton, D.E., Heritability of body size of green swordtails, Xiphophorus helleri: 1. Sib analyses of males reared individually and in groups, J. Hered., 1992, vol. 83, no. 1, pp. 43–48.

    Article  Google Scholar 

  11. Charo-Karisa, H., Komen, H., Rezk, M.A., et al., Heritability estimates and response to selection for growth of Nile tilapia (Oreochromis niloticus) in low-input earthen ponds, Aquaculture, 2006, vol. 261, pp. 479–486.

    Article  Google Scholar 

  12. Cherfas, N.B., Emel’yanova, O.V., Recoubratsky, A.V., et al., Analysis of hybrids of the Prussian carp and common carp (experience in the application of genetic methods in the work with distant hybrids), Trudy III Vsesoyuznogo soveshchaniya “Genetika v akvakul’ture” (Proc. III All-Union Conf. “Genetics in Aquaculture”), Leningrad: Nauka, 1989, pp. 137–152.

  13. Eanes, W.F., Morphological variance and enzyme heterozygosity in the monarch butterfly, Nature, 1978, vol. 276, pp. 263–264.

    Article  Google Scholar 

  14. Elnady, M.A., Obeida, A.M., and Hassanien, H.A., Estimates of heritabilities of some morphometric and blood traits in juvenile Nile tilapia from half-sib matings, Bull. Fac. Agric. Cairo Univ., 2000, vol. 51, no. 3, pp. 283–292.

    Google Scholar 

  15. Grant, V., Plant Speciation, New York: Columbia Univ. Press, 1971.

    Google Scholar 

  16. Handford, P., Heterozygosity at enzyme loci and morphological variation, Nature, 1980, vol. 286, pp. 261–262.

    Article  CAS  PubMed  Google Scholar 

  17. Heath, D.D., Rankin, L., Bryden, C.A., et al., Heritability and Y-chromosome influence in the jack male life history of chinook salmon (Oncorhynchus tschawytscha), Heredity, 2002, vol. 89, no. 4, pp. 311–317.

    Article  CAS  PubMed  Google Scholar 

  18. Hermida, M., Fernandez, C., Amaro, R., and San Miguel, E., Heritability and “evolvability” of meristic characters in a natural population of Gasterosteus aculeatus,Can. J. Zool., 2002, vol. 80, no. 3, pp. 532–541.

    Article  Google Scholar 

  19. Hoffman, E.A., Mobley, K.B., and Jones, A.G., Male pregnancy and the evolution of body segmentation in seahorses and pipefishes, Evolution, 2006, vol. 60, no. 2, pp. 404–410.

    Article  PubMed  Google Scholar 

  20. Karino, K. and Haijima, Y., Heritability of male secondary sexual traits in feral guppies in Japan, J. Ethol., 2001, vol. 19, no. 1, pp. 33–37.

    Article  Google Scholar 

  21. Kat, P.W., The relationship between heterozygosity for enzyme loci and developmental homeostasis in peripheral populations of aquatic bivalves (Unionidae), Am. Nat., 1982, vol. 119, pp. 824–832.

    Article  Google Scholar 

  22. Katasonov, V.Ya. and Gomel’skii, B.I., Selektsiya ryb s osnovami genetiki (Breeding of Fishes with General Genetics), Moscow: Agropromizdat, 1991.

  23. Kirpichnikov, V.S., Genetika i selektsiya ryb (Genetics and Breeding of Fishes), Leningrad: Nauka, 1987.

  24. Klerks, P.L. and Moreau, C.J., Heritability of resistance to individual contaminants and to contaminant mixtures in the sheepshead minnow (Cyprinodon variegates), Environ. Toxicol. Chem., 2001, vol. 20, no. 8, pp. 1746–1751.

    Article  CAS  PubMed  Google Scholar 

  25. Knibb, W., Gorshkova, G., and Gorshkov, S., Selection for growth in the gilthead seabream, Sparus aurata L., Isr. J. Aquacult.-Bamidgeh., 1997, vol. 49, no. 2, pp. 57–66.

    Google Scholar 

  26. Koedprang, W., Ohara, K., and Taniguchi, N., Genetic and environmental variances on growth and reproductive traits of silver crucian carp Carassius langsdorfii using communal and separate rearing systems, Fish. Sci. Tokyo, 2000, vol. 66, no. 6, pp. 1092–1099.

    Article  CAS  Google Scholar 

  27. Leary, R.F. and Allendorf, F.W., Fluctuating asymmetry as an indicator of stress: implications for conservation biology, Trends Ecol. Evol., 1989, vol. 4, pp. 214–217.

    Article  CAS  PubMed  Google Scholar 

  28. Leary, R.F., Allendorf, F.W., and Knudsen, K.L., Inheritance of meristic variation and the evolution of developmental stability in rainbow trout, Evolution, 1985, vol. 39, pp. 308–314.

    Article  PubMed  Google Scholar 

  29. Leary, R.F., Allendorf, F.W., and Knudsen, K.L., Genetic, environmental, and developmental causes of meristic variation in rainbow trout, Acta Zool. Fen., 1992, vol. 191, pp. 79–95.

    Google Scholar 

  30. Lerner, I.M., Genetic Homeostasis, New York: Wiley, 1954.

    Google Scholar 

  31. Lush, J.L., Methods of measuring the heritability of individual differences among farm animals, Proc. Seventh Int. Genetic Congr., Edinburgh, Scotland, Cambridge: Cambridge Univ. Press, 1941, p. 199.

  32. Milishnikov, A.N., Molecular mechanism of adaptive evolution of ameiotic populations of animals, Materialy IV Vsesoyuznogo simpoziuma “Molekulyarnye mekhanizmy geneticheskikh protsessov” (Proc. IV All-Union Symp. “Molecular Mechanisms of Genetic Processes”), Moscow, 1979, pp. 77–78.

  33. Mitton, J.B., Relationship between heterozygosity for enzyme loci and variation of morphological characters in natural populations, Nature, 1978, vol. 273, pp. 661–662.

    Article  CAS  PubMed  Google Scholar 

  34. Morishima, K., Horie, S., Yamaha, E., and Arai, K., A cryptic clonal line of the loach Misgurnus anguillicaudatus (Teleostei: Cobitidae) evidenced by induced gynogenesis, interspecific hybridization, microsatellite genotyping and multilocus DNA fingerprinting, Zool. Sci., 2002, vol. 19, no. 5, pp. 565–575.

    Article  Google Scholar 

  35. Morishima, K., Yoshikawa, H., and Arai, K., Diploid clone produces unreduced diploid gametes but tetraploid clone generates reduced diploid gametes in the Misgurnus loach, Biol. Reprod., 2012, vol. 86, no. 2, pp. 1–8.

    Article  CAS  Google Scholar 

  36. Mousseau, T.A., Ritland, K., and Heath, D.D., A novel method for estimating heritability using molecular markers, Heredity, 1998, vol. 80, no. 2, pp. 218–224.

    Article  Google Scholar 

  37. Nakajima, M., Ando, D., Kijima, A., and Fujio, Y., Heritability of vertebral number in the coho salmon Oncorhynchus kisutch,Tohoku J. Agric. Res., 1996, vol. 47, nos. 1–2, pp. 29–36.

    Google Scholar 

  38. Navarro, A., Zamorano, M.J., Ginés, R., et al., Estimaciones preliminaries de heredabilidades para caracteres de calidad de la carne en dorada (Sparus auratus L.), XI Congreso Nacional de Acuicultura, Paneles, 2007, pp. 215–218.

  39. Quattro, J.M. and Vrijenhoek, R.C., Fitness differences among remnant populations of the endangered Sonoran topminnow,Science, 1989, vol. 245, pp. 976–978.

    Article  CAS  PubMed  Google Scholar 

  40. Rachek, E.I., and Svirskii, V.G., Industrial fish farming in TINRO Center: 2000–2010 and decade later, in TINRO-85: Itogi deyatel’nosti 2000–2010 gg. (TINRO-85: The Research Results of 2000–2010), Vladivostok: TINRO-Tsentr, 2010, pp. 225–245.

  41. Saillant, E., Ma, L., Wang, X., et al., Heritability of juvenile growth traits in red drum (Sciaenops ocellatus L.), Aquacult. Res., 2007, vol. 38, no. 8, pp. 781–788.

    Article  Google Scholar 

  42. Shikano, T., Quantitative genetic parameters for growth-related and morphometric traits of hatchery-produced Japanese flounder Paralichthys olivaceus in the wild, Aquacult. Res., 2007, vol. 38, no. 12, pp. 1248–1253.

    Article  Google Scholar 

  43. Skirin, V.I., and Svirskii, V.G., Morphological characteristics of hybrids in interspecies breeding of sturgeon fishes of genera Huso and Acipenser, in Chteniya pamyati V.Ya. Levanidova (Vladimir Ya. Levanidov’s Biennial Memorial Meetings), Vladivostok: Dal’nauka, 2008, no. 4, pp. 406–412.

  44. Soulé, M.E., Heterozygosity and developmental stability: another look, Evolution, 1979, vol. 33, pp. 396–401.

    Article  PubMed  Google Scholar 

  45. Strauss, R.E., Associations between genetic heterozygosity and morphological variability in freshwater sculpins, genus Cottus (Teleostei, Cottidae), Biochem. Syst. Ecol., 1989, vol. 17, no. 4, pp. 333–340.

    Article  Google Scholar 

  46. The Freshwater Fishes of Europe, Vol. 1, Part 2: General Introduction to Fishes. Acipenseriformes, Holčik, J., Ed., Wiesbaden: AULA-Verlag, 1989.

  47. Vasil’ev, V.P., Mechanisms of polyploidy evolution in fish: polyploidy in sturgeons, in Biology, Conservation and Sustainable Development of Sturgeons, Fish and Fisheries Series vol. 29, Carmona, R., , Eds., Dordrecht: Springer-Verlag, 2009, pp. 97–117.

    Google Scholar 

  48. Vasil’ev, V.P., Rachek, E.I., Medvedev, D.A., et al., Sturgeons: polyploidy, hybrids, and clones, Materialy Vserossiiskoi nauchno-prakticheskoi konferentsii “Morksie biologicheskie issledovaniya: dostizheniya i perspektivy” (Proc. All-Russ. Sci.-Pract. Conf. “Marine Biological Studies: Achievements and Prospects”), Gaevskaya, A.V., Ed., Sevastopol: EKOSI-Gidrofizika, 2016, vol. 1, pp. 373–376.

  49. Vasil’ev, V.P., Medvedev, D.A., Rachek, E.I., et al., Clonal progeny of hybrids of sturgeon fishes as the experimental reproduction of the first stages of reticular speciation, Materialy mezhdunarodnoi nauchnoi konferentsii “Genetika populyatsii: progress i perspektivy” (Proc. Int. Sci. Conf. “Genetics of Populations: Progress and Prospects”), Moscow: Vash Format, 2017a, pp. 51–52.

  50. Vasil’ev, V.P., Rachek, E.I., Myuge, N.S., et al., Evolutionary polyploidy, hybridization, and clones of sturgeons (Acipenseridae), Materialy III mezhdunarodnoi konferentsii “Sovremennye problemy biologicheskoi evolyutsii” (Proc. III Int. Conf. “Modern Problems of Biological Evolution”), Moscow: Gos. Darvin. Muz., 2017b, pp. 231–234.

  51. Vasil’eva, E.D., Morphological variability of clonal species of vertebrates: spined loaches (genus Cobitis, Pisces) and Prussian carp (Carassius auratus gibelio, Pisces), Zh. Obshch. Biol., 1990, vol. 51, no. 6, pp. 775–782.

    Google Scholar 

  52. Vasil’eva, E.D., Some morphological characteristics of Acipenserid fishes: considerations of their variability and utility in taxonomy, J. Appl. Ichthyol., 1999, vol. 15, nos. 4–5, pp. 32–34.

    Article  Google Scholar 

  53. Vasil’eva, E.D., Morphological data corroborating the assumption of independent origins within octoploid sturgeon species, J. Ichthyol., 2004, vol. 44, suppl. 1, pp. 63–72.

    Google Scholar 

  54. Vasil’eva, E.D., Morphological and morphometric characters in sturgeon taxonomy and phylogeny, in Biology, Conservation and Sustainable Development of Sturgeons, Fish and Fisheries Series vol. 29, Carmona, R., , Eds., Dordrecht: Springer-Verlag, 2009, pp. 51–61.

    Google Scholar 

  55. Vasil’eva, E.D. and Vasil’ev, V.P., Genetic and modification variation of quantitative characters in fish: A comparative analysis of clonal and bisexual forms of the goldfish Carassius auratus (Cyprinidae), J. Ichthyol., 2005, vol. 45, no. 8, pp. 555–565.

    Google Scholar 

  56. Vasil’eva, E.D. and Vasil’ev, V.P., Genetic and modification variability of quantitative morphological features of fishes: comparison of clonal and bisexual forms of the loaches of genus Cobitis and the goldfish Carassius auratus (Cypriniformes), Mezhdunarodnaya konferentsiya “Genetika, selektsiya, gibridizatsiya, plemennoe delo i vosproizvodstvo ryb,” Tezisy dokladov (Int. Conf. “Genetics, Selection, Hybridization, Breeding, and Reproduction of Fishes,” Abstracts of Papers), St. Petersburg: Gos. Nauchno-Issled. Inst. Ozern. Rechn. Rybn. Khoz., 2008, pp. 34–35.

  57. Vasil’eva, E. and Vasil’ev, V., Genetic and environmental variations in quantitative characters in fishes: a comparative analysis of monoclonal triploid form and bisexual spined loach species (Cobitis, Cobitidae) and tetraploid forms of different origin, Proc. XIII European Congr. of Ichthyology, Abstracts of Papers, Klaipéda: Klaipédos Univ. 2009, p. 95.

  58. Vasil’eva, E.D. and Vasil’ev, V.P., Genetic and environmental variations in quantitative characters in fishes: a comparative analysis of monoclonal triploid and bisexual tetraploid spined loaches (Cobitis, Cobitidae), J. Ichthyol., 2010, vol. 50, no. 10, pp. 960–968.

    Article  Google Scholar 

  59. Vasil’eva, E.D. and Vasil’ev, V.P., Genetic and modification variability of quantitative morphological features of fishes: comparison of clonal and bisexual forms, Materialy shkoly molodykh spetsialistov i studentov “Sovremennye problemy evolyutsionnoi morfologii zhivotnykh” (Proc. Workshop of Young Scientists and Students “Modern Problems of Evolutionary Morphology of the Animals”), St. Petersburg: Zool. Inst., Ross. Akad. Nauk, 2011, pp. 13–16.

  60. Vasil’eva, E.D. and Vasil’ev, V.P., Genetic and modification variability of quantitative morphological features of fishes: comparison of clonal and bisexual forms, Mezhdunarodnaya konferentsiya “Genetika, selektsiya, gibridizatsiya, plemennoe delo i vosproizvodstvo ryb,” Tezisy dokladov (Int. Conf. “Genetics, Selection, Hybridization, Breeding, and Reproduction of Fishes,” Abstracts of Papers), St. Petersburg: Gos. Nauchno-Issled. Inst. Ozern. Rechn. Rybn. Khoz., 2013, pp. 100–108.

  61. Vasil’eva, E.D., Grunina, A.S., and Rekubratskii, A.V., Some morphological features of androgenetic nuclear-cytoplasmic hybrids of Persian Acipenser persicus and Russian A. gueldenstaedtii sturgeons in post-larval ontogenesis, Vopr. Ikhtiol., 2001, vol. 41, no. 4, pp. 530–537.

    Google Scholar 

  62. Vrijenhoek, R.C. and Lerman, S., Heterozygosity and developmental stability under sexual and asexual breeding systems, Evolution, 1982, vol. 36, no. 4, pp. 768–776.

    Article  PubMed  Google Scholar 

  63. Xie, L. and Klerks, P.L., Responses to selection for cadmium resistance in the least killifish, Heterandria formosa,Environ. Toxicol. Chem., 2003, vol. 22, no. 2, pp. 313–320.

    Article  CAS  PubMed  Google Scholar 

  64. Zakharov, V.M., Population phenogenetics: analysis of developmental stability in natural populations, Acta Zool. Fen., 1992, vol. 191, pp. 7–30.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The experimental studies and the analysis of inheritance and variability of morphological traits in sturgeon fishes were financially supported by the Russian Foundation for Basic Research, project no. 16-04-00130 and the study of biodiversity and the processing of deposited museum collections by the Russian Science Foundation, project no. 14-50-00029 within the framework of the governmental topic no. AAAA-A16-116021660077-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. D. Vasil’eva.

Additional information

Translated by E. Shvetsov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasil’eva, E.D., Rachek, E.I., Amvrosov, D.Y. et al. A Comparative Morphological Analysis of the Clonal Progeny from a Female Hybrid Sterlet Acipenser ruthenus × Kaluga A. dauricus (Acipenseridae): The Genetic and Modification Variability in a Number of Quantitative Morphological Traits. J. Ichthyol. 58, 662–669 (2018). https://doi.org/10.1134/S0032945218050193

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032945218050193

Keywords:

Navigation