Skip to main content
Log in

Features of Spatial Structure of Mikizha Parasalmo mykiss in the Kol River, Western Kamchatka: On the Problem of the Population Integration in the Complex River System

  • Published:
Journal of Ichthyology Aims and scope Submit manuscript

Abstract—

The features of within-river migrations, biological and morphological characteristics, and allozyme variation are studied in mikizha Parasalmo mykiss in the Kol River basin, Western Kamchatka. In this river system with a complex geomorphology, mikizha spawns in tundra-type tributaries, and each tributary is characterized by a certain combination of size, water content, hydrological, and thermic regime. Therefore, the spawning conditions, as well as spatial distribution and biological characteristics of the progeny, are variable. Based on the mark-recapture data, mikizha intensively migrates within the river system, and it does not show any fidelity to certain sites; the spawners can enter different tributaries in various years. Based on the variation of morphometric characters, the difference between the juveniles from various tributaries is absent. The results of allozyme variation show that, despite a mosaic structure of the habitats, mikizha of the Kol River is represented by a single population with a common genofond. Based on the results of this study, it is concluded that mikizha of the Kol River is a single and highly integrated population despite the factors facilitating the diversity. A mechanism of a stable population unity is connected with the within-river migrations, and the spawners are redistributed in different tributaries of the river during each year. This redistribution is directed against the founder effect and gene drift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Adams, F.J., Status of Rainbow Trout in Tributaries of the Upper King Salmon River, Becharof National Wildlife Refuge, Alaska, 1990–1992, Alaska Fisheries Technical Report No. 53, Sacramento: US Fish Wildl. Service, 1999.

  2. Altukhov, Yu.P., Geneticheskie protsessy v populyatsiyakh (Genetic Processes in Populations), Moscow: Akademkniga, 2003.

  3. Angers, B., Magnan, P., Plante, M., and Bernatchez, L., Canonical correspondence analysis for estimating spatial and environmental effects on microsatellite gene diversity in brook char (Salvelinus fontinalis), Mol. Ecol., 1999, vol. 8, pp. 1043–1053.

    Article  Google Scholar 

  4. Baltz, D.M., Vondracek, R., Brown, L.R., and Moyle, P.B., Seasonal changes in microhabitat selection by rainbow trout in a small stream, Trans. Am. Fish. Soc., 1991, vol. 120, pp. 166–176.

    Article  Google Scholar 

  5. Bernatchez, L., A role for molecular systematics in defining evolutionary significant units in fishes, Symp. “Evaluation and the Aquatic Ecosystem: Defining Unique Units in Population Conservation, Nielsen, J.L., Ed., Bethesda, MD: Am. Fish. Soc., 1995, no. 17, pp. 114–132.

  6. Bjornn, T.C., Trout and salmon movements in two Idaho streams as related to temperature, food, stream flow, cover, and population density, Trans. Am. Fish. Soc., 1971, vol. 100, pp. 423–438.

    Article  Google Scholar 

  7. Bjornn, T.C. and Mallet, J., Movements of planted and wild trout in an Idaho river system, Trans. Am. Fish. Soc., 1964, vol. 93, pp. 70–76.

    Article  Google Scholar 

  8. Brown, R.S., Spawning and overwintering movements and habitat use by cutthroat trout (Oncorhynchus clarki) in the Ram River, Alberta, MSc Thesis, Edmonton: Univ. Alberta, 1994.

  9. Brown, R.S. and Mackay, W.C., Fall and winter movements of and habitat use by cutthroat trout in the Ram River, Alberta, Trans. Am. Fish. Soc., 1995, vol. 124, pp. 873–885.

    Article  Google Scholar 

  10. Budy, P., Thiede, G.P., McKell, M.D., and Thompson P., Weber River metapopulation and source-sink dynamics of native trout and nongame fishes, 2013 Performance Report to Utah Divisionof Wildlife Resources, Logan, UT: Utah Coop. Fish Wildl. Res. Unit, 2014.

    Google Scholar 

  11. Carlsson, J. and Nilsson, J., Effects of geomorphological structures on genetic differentiation among brown trout populations in Northern Boreal river drainage, Trans. Am. Fish. Soc., 2001, vol. 130, pp. 36–45.

    Article  Google Scholar 

  12. Carlsson, J., Olsen, K.H., Nilsson, J., et al., Microsatellites reveal fine-scale genetic structure in stream-living brown trout, J. Fish Biol., 1999, vol. 55, pp. 1290–1303.

    Article  CAS  Google Scholar 

  13. Castric, V. and Bernatchez, L., The rise and fall of isolation by distance in the anadromous brook charr (Salvelinus fontinalis Mitchill), Genetics, 2003, vol. 163, pp. 983–996.

    PubMed  PubMed Central  Google Scholar 

  14. Castric, V., Bonney, F., and Bernatchez, L., Landscape structure and hierarchical genetic diversity in the brook char, Salvelinus fontinalis,Evolution, 2001, vol. 55, pp. 1016–1028.

    Article  CAS  PubMed  Google Scholar 

  15. Castro-Santos, T., Haro, A., and Walk, S., A passive integrated transponder (PIT) tag system for monitoring fish ways, Fish. Res., 1996, vol. 28, pp. 253–261.

    Article  Google Scholar 

  16. Chapman, D.W. and Bjornn, T.C., Distribution of salmonids in streams with special reference to food and feeding, Symp. on Salmon and Trout in Streams. H.R. MacMillan Lectures in Fisheries, Northcotr, T.G., Ed., Vancouver: Univ. Br. Columbia, 1969, pp. 153–176.

    Google Scholar 

  17. Clapp, D.F., Clark, R.D., and Diana, J.S., Range, activity, and habitat of large, free-ranging brown trout in a Michigan stream, Trans. Am. Fish. Soc., 1990, vol. 119, pp. 1022–1034.

    Article  Google Scholar 

  18. Cooper, A.B. and Mangel, M., The dangers of ignoring metapopulation structure for the conservation of salmonids, Fish. Bull., 1999, vol. 97, pp. 213–226.

    Google Scholar 

  19. Costello, A.B., Down, T.E., Pollard, S.M., et al., The influence of history and contemporary stream hydrology on the evolution of genetic diversity within species: an examination of microsatellite DNA variation in bull trout, Salvelinus confluentus (Pisces: Salmonidae), Evolution, 2003, vol. 57, no. 2, pp. 328–344.

    Article  CAS  PubMed  Google Scholar 

  20. Cunjak, R.A. and Power, G., Winter habitat utilization by stream resident rainbow trout (Oncorhynchus mykiss), brook trout (Salvelinus fontinalis) and brown trout (Salmo trutta), Can. J. Fish. Aquat. Sci., 1986, vol. 43, pp. 1970– 1981.

    Article  Google Scholar 

  21. Currens, K.P., Schreck, C.B., and Li, H.W., Allozyme and morphological divergence of rainbow-trout (Oncorhynchus mykiss) above and below waterfalls in the Deschutes River, Oregon, Copeia, 1990, vol. 34, pp. 730–746.

    Article  Google Scholar 

  22. Davis, B.J., Disc electrophoresis–II method and application to human serum proteins, Ann. N.Y. Acad. Sci., 1964, no. 121, pp. 405–427.

  23. DeHaan, P.W., Bernall, S.R., DosSantos, J.M., et al., Use of genetic markers to aid in re-establishing migratory connectivity in a fragmented metapopulation of bull trout (Salvelinus confluentus), Can. J. Fish. Aquat. Sci., 2011, vol. 68, pp. 1952–1969.

    Article  Google Scholar 

  24. Dingle, H., Migration: The Biology of Life on the Move, Oxford: Oxford Univ. Press, 1996.

    Google Scholar 

  25. Doubleday, Z.A., Harris, H.H., Izzo, C., and Gillanders, B.M., Strontium randomly substituting for calcium in fish otolith aragonite, Anal. Chem., 2014, vol. 86, pp. 865–869.

    Article  CAS  PubMed  Google Scholar 

  26. Dunaway, D.O., Status of Rainbow Trout Stocks in the Agulowak and Agulukpak Rivers of Alaska during 1992, Anchorage: Alaska Dep. Fish Game, 1993.

    Google Scholar 

  27. Dunham, J.B. and Rieman, B.E., Metapopulation structure of bull trout: influences of physical, biotic, and geometrical landscape characteristics, Ecol. Appl., 1999, vol. 9, pp. 642–655.

    Article  Google Scholar 

  28. Falke, J.A., Dunham, J.B., Jordan, C.E., et al., Spatial ecological processes and local factors predict the distribution and abundance of spawning by steelhead (Oncorhynchus mykiss) across a complex rivers cape, PLoS One, 2013, vol. 8, no. 11, p. e79232. doi 10.1371/journal.pone.0079232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fausch, K.D., Profitable stream positions for salmonids: relating specific growth rate to net energy gain, Can. J. Zool., 1984, vol. 62, pp. 441–451.

    Article  Google Scholar 

  30. Fraley, K.M., Falke, J.A., Yanusz, R., and Ivey, S., Seasonal movements and habitat use of potamodromous rainbow trout across a complex Alaska riverscape, Trans. Am. Fish. Soc., 2016, vol. 145, pp. 1077–1092.

    Article  Google Scholar 

  31. Fraser, D.J., Weir, L.K., Bernatchez, L., et al., Extent and scale of local adaptation in salmonid fishes: review and meta-analysis, Heredity, 2011, vol. 106, pp. 404–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gall, G.A.E., Bentley, B., and Nuzum, R.C., Genetic isolation of steelhead rainbow trout in Kaiser and Redwood creeks, California, Calif. Fish Game Sci. Ser., 1990, vol. 76, pp. 216–223.

    Google Scholar 

  33. Griswold, K.E., Currens, K.P., and Reeves, G.H., Genetic and meristic divergence of coastal cutthroat trout residing above and below barriers in two coastal basins, in Sea-Run Cutthroat Trout: Biology, Management, and Future Conservation, Hall, J.D., , Eds., Corvallis: Am. Fish. Soc., 1997, pp. 167–169.

    Google Scholar 

  34. Guy, T.J., Landscape-scale evaluation of genetic structure among barrier-isolated populations of coastal cutthroat trout, Oncorhynchus clarki clarki, MSc Thesis, Corvallis: Oregon State Univ., 2005.

  35. Hanski, I., Metapopulation Ecology, Oxford: Oxford Univ. Press, 1999.

    Google Scholar 

  36. Heath, D.D., Pollard, S., and Herbinger, C., Genetic structure and relationships among steelhead trout (Oncorhynchus mykiss) populations in British Columbia, Heredity, 2001, vol. 86, pp. 618–627.

    Article  CAS  PubMed  Google Scholar 

  37. Hebert, C., Danzman, R.G., Jones, M.W., and Bernatchez, L., Hydrography and population genetic structure in brook charr (Salvelinus fontinalis, Mitchill) from eastern Canada, Mol. Ecol., 2000, vol. 9, pp. 971–982.

    Article  CAS  PubMed  Google Scholar 

  38. Heggenes, J., Northcote, T.G., and Peter, A., Spatial stability of cutthroat trout (Oncorhynchus clarki) in a small, coastal stream, Can. J. Fish. Aquat. Sci., 1991, vol. 48, pp. 757–762.

    Article  Google Scholar 

  39. Hendry, A.P. and Stearns, S.C., Evolution Illuminated: Salmon and Their Relatives, Oxford: Oxford Univ. Press, 2004.

    Google Scholar 

  40. Hilderbrand, R.H. and Kershner, J.L., Movement patterns of stream-resident cutthroat trout in Beaver Creek, Idaho–Utah, Trans. Am. Fish. Soc., 2000, vol. 129, pp. 1160–1170.

    Article  Google Scholar 

  41. Hughes, N.F., Testing the ability of habitat selection theory to predict interannual movement patterns of a drift-feeding salmonid, Ecol. Freshwater Fish., 2000, vol. 9, pp. 4–8.

    Article  Google Scholar 

  42. Kalish, J.M., Use of otolith microchemistry to distinguish the progeny of sympatric anadromous and nonanadromous salmonids, Fish. Bull. U.S., 1990, vol. 88, no. 4, pp. 657–666.

    Google Scholar 

  43. Kendall, N.W., McMillan, J.R., Sloat, M.R., et al., Anadromy and residency in steelhead and rainbow trout Oncorhynchus mykiss: a review of the processes and patterns, Can. J. Fish. Aquat. Sci., 2015, vol. 72, no. 3, pp. 319–342.

    Article  CAS  Google Scholar 

  44. Kingsolver, J.G. and Huey, R.B., Evolutionary analysis of morphological and physiological plasticity in thermally variable environments, Acta Zool., 1998, vol. 38, pp. 545–560.

    Google Scholar 

  45. Klemetsen, A., Amundsen, P.-A., Dempson, J.B., et al., Atlantic salmon Salmo salar L., brown trout Salmo trutta L., and Arctic char Salvelinus alpinus (L.): a review aspects of their life histories, Ecol. Freshwater Fish., 2003, vol. 12, pp. 1–59.

    Article  Google Scholar 

  46. Kuzishchin, K.V., Development and adaptive role of intraspecific ecological diversity of salmon fishes (family Salmonidae), Extended Abstract of Doctoral (Biol.) Dissertation, Moscow: Moscow State. Univ., 2010.

  47. Kuzishchin, K.V., Pavlov, S.D., Gruzdeva, M.A., Pavlov, D.S., Maksimov, S.V., and Savvaitova, K.A., Spawning population and reproductive ecology of the freshwater Kamchatka steelhead Parasalmo mykiss in the basin of the Zhupanova River (East Kamchatka), J. Ichthyol., 2002, vol. 42, no. 8, pp. 601–614.

    Google Scholar 

  48. Kuzishchin, K.V., Mal’tsev, A.Yu., Gruzdeva, M.A., Savvaitova, K.A., Pavlov, D.S., and Stanford, D.A., On joint spawning of anadromous and resident mykiss Parasalmo mykiss in rivers of Western Kamchatka, J. Ichthyol., 2007, vol. 47, no. 5, pp. 348–352.

    Article  Google Scholar 

  49. Kuzishchin, K.V., Mal’tsev, A.Yu., Gruzdeva, M.A., Savvaitova, K.A., Pavlov, D.S., and Stanford, J., Reproduction of mykiss Parasalmo mykiss in the Kol River (Western Kamchatka) and its controlling factors, J. Ichthyol., 2008, vol. 48, no. 1, pp. 45–56.

    Article  Google Scholar 

  50. Kuzishchin, K.V., Pavlov, D.S., Gruzdeva, M.A., and Savvaitova, K.A., Tipovye metodiki sbora materiala dlya izucheniya monitoringa raznoobraziya i sredy obitaniya lososevykh ryb v rechnykh ekosistemakh (Standard Methods for Collection of the Material for the Monitoring of Diversity and Habitat Conditions of Salmon Fishes in River Ecosystems), Moscow: Mosk. Gos. Univ., 2009.

  51. Kuzishchin, K.V., Gruzdeva, M.A., Savvaitova, K.A., Pavlov, D.S., and Stanford, J.A., Seasonal races of chum salmon Oncorhynchus keta and their interrelations in Kamchatka Rivers, J. Ichthyol., 2010, vol. 50, no. 2, pp. 159–173.

    Article  Google Scholar 

  52. Kuzishchin, K.V., Gruzdeva, M.A., Malyutina, A.M., and Pavlov, D.S., Spatial distribution of juveniles of the mykiss Parasalmo mykiss in the Kol’ River (Western Kamchatka), Materialy XIV mezhdunarodnoi konferentsii “Sokhranenie bioraznoobraziya Kamchatki i prilegayushchikh morei” (Proc. XIV Int. Sci. Conf. “Conservation of Biological Diversity of Kamchatka and Adjacent Waters”), Petropavlovsk-Kamchatskii: Kamchatpress, 2013, pp. 354–358.

  53. Lewis, P.O. and Zaykin, D., Genetic data analysis: computer program for the analysis of allelic data, Version 1.0 (d 16c), 2001. http://lewis.eeb.unconn.edu/lewishome/software.html.

  54. Lewis, S.L., Physical factors influencing fish populations in pools of a trout stream, Trans. Am. Fish. Soc., 1969, vol. 98, pp. 14–19.

    Article  Google Scholar 

  55. Massa-Gallucci, A., Coscia, I., O’Grady, M., et al., Patterns of genetic structuring in a brown trout (Salmo trutta L.) metapopulation, Conserv. Gen., 2010, vol. 11, pp. 1689–1699.

    Article  Google Scholar 

  56. McPhee, M.V., Utter, F., Stanford, J.A., et al., Population structure and partial anadromy in Oncorhynchus mykiss from Kamchatka: relevance for conservation around the Pacific Rim, Ecol. Freshwater Fish., 2007, vol. 16, no. 4, pp. 539–547.

    Article  Google Scholar 

  57. McPhee, M.V., Whited, D.C., Kuzishchin, K.V., and Stanford, J.A., The effects of riverine physical complexity on anadromy and genetic diversity in steelhead or rainbow trout Oncorhynchus mykiss around the Pacific Rim, J. Fish Biol., 2014, vol. 85, no. 1, pp. 132–150.

    Article  CAS  PubMed  Google Scholar 

  58. Meka, J.M., Knudsen, E.E., Douglas, D.C., and Benter, R.B., Variable migratory patterns of different adult rainbow trout life history types in a southwest Alaska watershed, Trans. Am. Fish. Soc., 2003, vol. 132, pp. 717–732.

    Article  Google Scholar 

  59. Mellina, E., Hinch, S.G., Mackenzie, K.D., and Pearson, G., Seasonal movement patterns of stream-dwelling rainbow trout in North-Central British Columbia, Canada, Trans. Am. Fish. Soc., 2005, vol. 134, pp. 1021–1037.

    Article  Google Scholar 

  60. Meyers, L.S., Thuemler, T.F., and Kornely, G.W., Seasonal movements of rainbow trout in northeast Wisconsin, N. Am. J. Fish. Manage., 1992, vol. 12, pp. 433–441.

    Article  Google Scholar 

  61. Mina, M.V., Mikroevolyutsiya ryb (Microevolution of Fishes), Moscow: Nauka, 1986.

  62. Narum, S.R., Boe, S., Moran, P., and Powell, M., Small scale genetic structure and variation in steelhead trout of the Grande Ronde River, Oregon, U.S.A., Trans. Am. Fish. Soc., 2006, vol. 135, pp. 979–986.

    Article  CAS  Google Scholar 

  63. Narum, S.R., Hatch, D., Talbot, A.J., et al., Iteroparity in complex mating systems of steelhead Oncorhynchus mykiss (Walbaum), J. Fish Biol., 2008, vol. 72, pp. 45–60.

    Article  Google Scholar 

  64. Nei, M., Genetic distance between populations, Am. Nat., 1972, vol. 106, pp. 283–292.

    Article  Google Scholar 

  65. Nei, M., Maruyama, T., and Chakraborty, R., The bottleneck effect and genetic variability in populations, Evolution, 1975, vol. 29, pp. 1–10.

    Article  PubMed  Google Scholar 

  66. Nelle, R.D. and Lisac, M., Seasonal Movement and Distribution of Rainbow Trout (Onchorynchus mykiss) in the Togiak River Watershed, Togiak National Wildlife Refuge: Final Report, Dillingham: Togiak National Wildlife Refuge, 2001.

  67. Neville, H.M., Dunham, J.B., and Peacock, M.M., Landscape attributes and life history variability shape genetic structure of trout populations in a stream network, Landscape Ecol., 2006, vol. 21, pp. 901–916.

    Article  Google Scholar 

  68. Nielsen, J.L., Molecular Genetic Population Structure in Steelhead/Rainbow Trout (Oncorhynchus mykiss) from the Santa Ynez River, 1994–1997, Santa Barbara: Santa Ynez River Tech. Advis. Comm., 1998.

    Google Scholar 

  69. Nielsen, J.L., Population Genetic Structure of Alameda Creek Rainbow/Steelhead Trout—2002, Anchorage: Alaska Sci. Center. 2003.

    Google Scholar 

  70. Nielsen, J.L. and Sage, G.K., Microsatellite analyses of the trout of northwest Mexico, Genetica, 2001, vol. 111, pp. 269–278.

    Article  CAS  PubMed  Google Scholar 

  71. Nielsen, J.L. and Sage, G.K., Microsatellite and mtDNA Analyses of San Mateo Creek Trout, 2001, Camp Pendleton: U.S. Dep. Defense, 2002.

    Google Scholar 

  72. Nielsen, J.L., Zimmerman, C.E., Olsen, J.B., et al., Population Genetic Structure of Santa Ynez Rainbow Trout—2001 Based on Microsatellite and mtDNA Analyses, Sacramento: US Fish Wildl. Service, 2003.

    Google Scholar 

  73. Nikol’skii, G.V., Struktura vida i zakonomernosti izmenchivosti ryb (The Structure of Species and Variability Pattern of Fishes), Moscow: Pishchevaya Prom-st, 1980.

  74. Northcote, T.G., Migration and residency in stream salmonids—some ecological considerations and evolutionary consequences, Nord. J. Freshwater Res., 1992, vol. 67, pp. 5–17.

    Google Scholar 

  75. Northcote, T.G., Potamodromy in Salmonidae—living and moving in the fast lane, N. Am. J. Fish. Manage., 1997, vol. 17, pp. 1029–1045.

    Article  Google Scholar 

  76. Palmer, D.E., Migratory behavior and seasonal distribution of radio-tagged rainbow trout in the Kenai River, Alaska. U.S., Anchorage: US Fish Wildl. Service, 1998.

    Google Scholar 

  77. Pavlov, D.S. and Skorobogatov, M.A., Migratsii ryb v zaregulirovannykh rekakh (Migration of Fishes in Regulated Rivers), Moscow: KMK, 2014.

  78. Pavlov, D.S., Savvaitova, K.A., and Kuzishchin, K.V., Epigenetic variations of the life strategy of Kamchatka rainbow trout Parasalmo mykiss (Salmonidae, Salmoniformes) from the Red Data Book, Dokl. Akad. Nauk, 1999, vol. 367, no. 5, pp. 709–713.

    CAS  Google Scholar 

  79. Pavlov, D.S., Savvaitova, K.A., Kuzishchin, K.V., et al., Tikhookeanskie blagorodnye lososi i foreli Azii (Pacific Noble Salmons and Trouts in Asia), Moscow: Nauchnyi Mir, 2001a.

  80. Pavlov, D.S., Savvaitova, K.A., and Kuzishchin, K.V., Theoretical aspects of the problem of the distribution pattern and formation of life-history strategy of mikizha (Parasalmo mykiss (Walbaum), Salmonidae, Salmoniformes) on the Kamchatka Peninsula, Dokl. Biol. Sci., 2001b, vol. 379, nos. 1–6, pp. 344–346.

    Article  CAS  PubMed  Google Scholar 

  81. Pavlov, D.S., Savvaitova, K.A., Kuzishchin, K.V., Gruzdeva, M.A., Mal’tsev, A.Yu., and Stanford, J.A., Diversity of life strategies and population structure of Kamchatka mykiss Parasalmo mykiss in the ecosystems of small salmon rivers of various types, J. Ichthyol., 2008, vol. 48, no. 1, pp. 37–44.

    Article  Google Scholar 

  82. Pavlov, D.S., Savvaitova, K.A., Kuzishchin, K.V., et al., Sostoyanie i monitoring bioraznoobraziya lososevykh ryb i sredy ikh obitaniya na Kamchatke (na primere territorii zakaznika “Reka Kol’”) (The Status and Monitoring of Biological Diversity of Salmon Fishes and Their Habitat Conditions in Kamchatka by Example of Reka Kol’ Nature Nursery), Moscow: KMK, 2009.

  83. Pavlov, D.S., Kuzishchin, K.V., Gruzdeva, M.A., Polyakov, M.P., and Pelgunova, L.A., Life history strategy diversity in the Kamchatka Dolly Varden char Salvelinus malma (Walbaum) (Salmonidae, Salmoniformes): ontogenetic reconstructions based on the data of X-ray fluorescence analysis of the microchemistry of recording structures, Dokl. Biol. Sci., 2013, vol. 450, no. 1, pp. 142–145.

    Article  CAS  PubMed  Google Scholar 

  84. Pavlov, D.S., Kirillov, P.I., Kirillova, E.A., et al., Sostoyanie bioraznoobraziya lososevykh ryb i ryboobraznykh i sredy ikh obitaniya v basseine reki Utkholok (Biological Diversity and Habitat of Salmon Fishes and Fish-Like Species in the Utkholok River Basin), Moscow: KMK, 2016.

  85. Pavlov, S.D., Allozyme variability and genetic divergence of Pacific mykizha (genus Parasalmo) of Western Kamchatka, Genet. Zhivotn., 2000, vol. 36, no. 9, pp. 1251–1261.

    CAS  Google Scholar 

  86. Peacock, A.C., Bunting, S.L., and Queen, K.G., Serum protein electrophoresis in acrylamide gel: patterns from normal human subjects, Science, 1965, vol. 147, no. 3664, pp. 1451–1453.

    Article  CAS  PubMed  Google Scholar 

  87. Pine, W.E., Pollock, K.H., Hightower, J.E., et al., A review of tagging methods for estimating fish population size and components of mortality, Fisheries, 2010, vol. 28, no. 10, pp. 10–23.

    Article  Google Scholar 

  88. Pracheil, B.M., McIntyre, P.B., and Lyons, J.D., Enhancing conservation of large-river biodiversity by accounting for tributaries, Front. Ecol. Environ., 2013, vol. 11, pp. 124–128.

    Article  Google Scholar 

  89. Prentice, E.P., Flagg, T.A., and McCutcheon, C.S., Feasibility of using implantable passive integrated (PIT) tags in salmonids, Am. Fish. Soc. Symp., 1990, vol. 7, pp. 317–322.

    Google Scholar 

  90. Radtke, R.L., Strontium-calcium concentration ratios in fish otoliths as environmental indicators, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 1989, vol. 92, pp. 189–193.

    Article  Google Scholar 

  91. Radtke, R.L., Kinzie, R.A., and Folsom, S.D., Age at recruitment of Hawaiian freshwater gobies, Environ. Biol. Fish., 1988, vol. 23, pp. 205–213.

    Article  Google Scholar 

  92. Radtke, R.L., Dempson, J.B., and Ruzicka, J., Microprobe analyses of anadromous Arctic charr, Salvelinus alpinus, otoliths to infer life history migration events, Polar Biol., 1997, vol. 19, no. 1, pp. 1–8.

    Article  Google Scholar 

  93. Raymond, M. and Rousset, F., GENEPOP: population genetics software for exact tests and ecumenicism, J. Hered., 1995, vol. 86, no. 3, pp. 248–249.

    Article  Google Scholar 

  94. Rieman, B.E. and Dunham, J.B., Metapopulations and salmonids: a synthesis of life history patterns and empirical observations, Ecol. Freshwater Fish., 2000, vol. 9, pp. 515–564.

    Article  Google Scholar 

  95. Savvaitova, K.A., Arkticheskie gol’tsy (struktura populyatsionnykh sistem, perspektivy khozyaistvennogo ispol’zovaniya) (The Arctic Chars: The Structure of Population Systems and Prospective Economic Use), Moscow: Agropromizdat, 1989.

  96. Schmetterling, D.A., Seasonal movements of fluvial west slope cutthroat trout in the Blackfoot River drainage, Montana, N. Am. J. Fish. Manage., 2001, vol. 21, pp. 507–520.

    Article  Google Scholar 

  97. Schrank, A.J. and Rahel, F.J., Movement patterns in inland cutthroat trout (Oncorhynchus clarki utah): management and conservation implications, Can. J. Fish. Aquat. Sci., 2004, vol. 61, pp. 1528–1537.

    Article  Google Scholar 

  98. Secor, D.H., Henderson-Arzapalo, A., and Piccoli, P.M., Can otolith microchemistry chart patterns of migration and habitat utilization in anadromous fishes? J. Exp. Mar. Biol. Ecol., 1995, vol. 192, pp. 15–33.

    Article  Google Scholar 

  99. Soloman, D.J. and Templeton, R.G., Movements of brown trout Salmo trutta L. in a chalk stream, J. Fish Biol., 1976, vol. 9, pp. 411–423.

    Article  Google Scholar 

  100. Stacey, P.B., Johnson, V.A., and Taper, M.L., Migration within metapopulations: the impact upon local population dynamics, in Metapopulation Biology: Ecology, Genetics, and Evolution, Hanski, I. and Gilpin, M.E., Eds., New York: Academic, 1997, pp. 267–291.

    Google Scholar 

  101. Sultan, S.E. and Spencer, H.G., Metapopulation structure favors plasticity over local adaptation, Am. Nat., 2002, vol. 160, pp. 271–283.

    Article  PubMed  Google Scholar 

  102. Swanberg, T.R., Movements of and habitat use by fluvial bull trout in the Blackfoot River, Montana, Trans. Am. Fish. Soc., 1997, vol. 126, pp. 735–746.

    Article  Google Scholar 

  103. Taylor, E.B., Redenbach, Z., Costello, A.B., et al., Nested analysis of genetic diversity in northwestern North American char, Dolly Varden (Salvelinus malma) and bull trout (Salvelinus confluentus), Can. J. Fish. Aquat. Sci., 2001, vol. 58, pp. 406–420.

    Article  CAS  Google Scholar 

  104. Taylor, E.B., Stamford, M.D., and Baxter, J.S., Population subdivision in west slope cutthroat trout (Oncorhynchus clarki lewisi) at the northern periphery of its range: evolutionary inferences and conservation implications, Mol. Ecol., 2003, vol. 12, pp. 2609–2622.

    Article  CAS  PubMed  Google Scholar 

  105. Torgersen, C.E., Baxter, C.V., Li, Y.W., and McIntosh, B.A., Landscape influences on longitudinal patterns of river fishes: spatially continuous analysis of fish habitat relationships, Am. Fish. Soc. Symp., 2006, vol. 48, pp. 473–492.

    Google Scholar 

  106. Varley, J.D. and Gresswell, R.E., Effects of a century of human influence on the cutthroat trout of Yellowstone Lake, Am. Fish. Soc. Symp., 1988, vol. 4, pp. 13–24.

    Google Scholar 

  107. Volk, E.C., Blakley, A., Schroder, S.L., and Kuehner, S.M., Otolith chemistry reflects migratory characteristics of Pacific salmonids: Using otolith core chemistry to distinguish maternal associations with sea and freshwaters, Fish. Res., 2000, vol. 46, pp. 251–266.

  108. Walsh, P., Olsen, J., Wenburg, J., et al., Genetic relationships of rainbow trout Oncorhynchus mykiss on Togiak National Wildlife Refuge, Alaska, in Progress Report of the US Fish and Wildlife Service, Togiak National Wildlife Refuge, Dillingham, 2013.

  109. Waples, R.S., Pacific salmon, Oncorhynchus spp., and definition of “species” under the endangered species, Act. US Nat. Mar. Fish. Serv. Mar. Fish. Rev., 1991, vol. 53, no. 3, pp. 11–22.

  110. Wenger, M.N., Lichorat, R.M., and Winter, J.D., Fall movements and behavior of radio-tagged brown trout and rainbow trout in eastern Lake Erie in 1979 and 1980, N.Y.Fish Game J., 1985, vol. 32, pp. 176–188.

    Google Scholar 

  111. White, S.M. and Rahel, F.J., Complementation of habitats for Bonneville Cutthroat trout in watersheds influenced by beavers, livestock, and drought, Trans. Am. Fish. Soc., 2008, vol. 137, pp. 881–894.

    Article  Google Scholar 

  112. Winans, G.A., Gayeski, N., and Timmins-Schiffman, E., All dam-affected trout populations are not alike: fine scale geographic variability in resident rainbow trout in Icicle Creek, WA, USA, Conserv. Genet., 2014, vol. 16, no. 2, pp. 301–315. doi doi 10.1007/s10592-014-0659-z

    Article  CAS  Google Scholar 

  113. Young, K.A., Managing the decline of Pacific salmon: metapopulation theory and artificial recolonization as ecological mitigation, Can. J. Fish. Aquat. Sci., 1999, vol. 56, pp. 1700–1706.

    Article  Google Scholar 

  114. Young, M.K., Mobility of brown trout in south-central Wyoming streams, Can. J. Zool., 1994, vol. 72, pp. 2078–2083.

    Article  Google Scholar 

  115. Young, M.K., Summer movements and habitat use by Colorado River cutthroat trout, (Oncorhynchus clarki pleuriticus) in small, montane streams, Can. J. Fish. Aquat. Sci., 1996, vol. 53, pp. 1403–1408.

    Article  Google Scholar 

  116. Zippin, C., An evaluation of the removal method of estimating animal population, Biometrics, 1956, vol. 12, no. 2, pp. 163–189.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the Wild Salmon Center (WSC), Portland, Oregon, United Stats, for organization of field researches; A.M. Mal’tseva, A.M. Malyutina, V.M. Pashina (Moscow State University, MSU), I.N. Savchenko, N.S. Dudukalova, and K.M. Mal’tseva (Wild Fishes and Biodiversity of Kamchatka) for valuable help in the collection of material in the field; and E.V. Gol’zhe (ZAO Urgui), Ya.K. Ivanova, and K.K. Ivanova (Sobolevsky District, Kamchatka krai) for help in collection of the fish and observations during the winter.

This study was supported by the Russian Scientific Foundation, project no. 14-50-00029 (MSU Data Depository).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Kuzishchin.

Additional information

Translated by D. Pavlov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzishchin, K.V., Gruzdeva, M.A., Pavlov, S.D. et al. Features of Spatial Structure of Mikizha Parasalmo mykiss in the Kol River, Western Kamchatka: On the Problem of the Population Integration in the Complex River System. J. Ichthyol. 58, 694–709 (2018). https://doi.org/10.1134/S0032945218050144

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032945218050144

Keywords:

Navigation