Skip to main content
Log in

Evaluation of buoyancy dynamics in the early ontogenesis of climbing perch Anabas testudineus (Anabantidae)

  • Published:
Journal of Ichthyology Aims and scope Submit manuscript

Abstract

The paper puts forward a new approach to estimation of buoyancy of hydrobionts using dispersion of various densities. The technique was applied to evaluate buoyancy variations in climbing perch Anabas testudineus at its early ontogeny. It was found that positive buoyancy characteristic of eggs and early stage larvae does not remain longer than the first eighty hours of development. Besides, this period is marked by significant fluctuations in buoyancy. The maximum buoyancy was recorded at the time of hatching of the embryos, which occurs at the age of approximately thirty hours. At ninety hours the buoyancy of larvae becomes negative. Later, it goes up somewhat, and the individual differences become more important in its dynamics pattern. Some individuals are neutrally buoyant, though no return to positive buoyancy was observed. The estimates obtained by the author create a foundation for further morphofunctional analysis of the hydrostatically significant structures in the early development of the climbing perch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amornsakun, T., Sriwatana, W., and Promkaew, P., Some aspects in early life stage of climbing perch, Anabas testudineus larvae, J. Sci. Technol., 2005, vol. 27, suppl. 1, pp. 403–418.

    Google Scholar 

  • Araujo-Lima, C.A.R.M. and Oliveira, E.C., Transport of larval fish in the Amazon, J. Fish Biol., 1998, vol. 53, pp. 297–306.

    Article  Google Scholar 

  • Bardet, J.-P. and Young, J., Grain-size analysis by buoyancy method, Geotech. Test. J., 1997, vol. 20, no. 4, pp. 481–485.

    Article  Google Scholar 

  • Bogatova, O.V. and Dogareva, N.G., Khimiya i fizika moloka (Chemistry and Physics of Milk), Orenburg: Orenb. Gos. Univ., 2004.

    Google Scholar 

  • Cambalik, J.J., Checkley, D.M., and Kamykovski, D., A new method to measure the terminal velocity of small particles: a demonstration using ascending eggs of the Atlantic menhaden (Brevoortia tyrannus), Limnol. Oceanogr., 1998, vol. 43, no. 7, pp. 1722–1727.

    Article  Google Scholar 

  • Chiappa-Carrara, X., Rioja-Nieto, R., and Mascaro, M., Mass density assessment: comparison of three methods using Oikopleura dioica (Appendicularia) as a model system, Caribb. J. Sci., 2006, vol. 42, no. 2, pp. 231–238.

    Google Scholar 

  • Coombs, S.H., A density-gradient column for determining the specific gravity of fish eggs, with special reference to eggs of mackerel Scomber scombrus, Mar. Biol., 1981, vol. 63, pp. 101–106.

    Article  Google Scholar 

  • Coombs, S.H., Boyra, G., Rueda, L.D., et al., Buoyancy measurements and vertical distribution of eggs of sardine (Sardina pilchardus) and anchovy (Engraulis encrasicolus), Mar. Biol., 2004, vol. 145, no. 5, pp. 959–970.

    Article  Google Scholar 

  • Coombs, S.H., Fosh, C.A., and Keen, M.A., The buoyancy and vertical distribution of eggs of sprat (Sprattus sprattus) and pilchard (Sardina pilchardus), J. Mar. Biol. Ass. U.K., 1985, vol. 65, pp. 461–474.

    Article  Google Scholar 

  • Cowley, D., Alleman, J.C., Sallenave, R., et al., Effects of salinity on specific gravity and viability of eggs of a North American minnow (Cyprinidae), Sci. Mar., 2009, vol. 73, suppl. 1, pp. 47–58.

    Article  CAS  Google Scholar 

  • Davis, C.C., A planktonic fish egg from fresh water, Limnol. Oceanogr., 1959, vol. 4, pp. 352–355.

    Article  Google Scholar 

  • Dudley, R.K. and Platania, S.P., Imitating the physical properties of drifting semibuoyant fish (Cyprinidae) eggs with artificial eggs, J. Freshwater Ecol., 1999, vol. 14, no. 4, pp. 423–430.

    Article  Google Scholar 

  • Dzerzhinsky, K.F., Suspended matter and hydrobiont buoyancy as exemplified by fish eggs, Dokl. Biol. Sci., 2012, vol. 443, no. 1, pp. 106–108.

    Article  CAS  PubMed  Google Scholar 

  • Frolov, Yu.G., Kurs kolloidnoi khimii (Lecturers on Colloid Chemistry), Moscow: Khimiya, 1982.

  • GSSSD 2-77. Tablitsy standartov spravochnykh dannykh. Voda. Plotnost’ pri atmosfernom davlenii i temperaturakh ot 0 do 100°C (GSSSD 2-77. Tables of Standards of References Data. Water. Density at Atmospheric Pressure and Temperatures from 0 to 100°C), Moscow: Izd. Standartov, 1978.

  • Haug, T., Kjorsvik, E., and Solemdal, P., Influence of some physical and biological factors on the density and vertical distribution of Atlantic halibut Hippoglossus hippoglossus eggs, Mar. Ecol.: Progr. Ser., 1986, vol. 33, pp. 207–216.

    Article  Google Scholar 

  • Konstantinov, A.S., Obshchaya gidrobiologiya (General Hydrobiology), Moscow: Vysshaya Shkola, 1986.

    Google Scholar 

  • Kurenkov, V.F., Nadezhdin, I.N., Zhelonkina, T.A., Hartan, H.-G., and Lobanov, F.I., Stabilization of kaolin suspension in the presence of copolymers of sodium 2-acrylamido-2-methylpropanesulfonate with N-vinylpyrrolidone, Russ. J. Appl. Chem., 2006, vol. 79, no. 1, pp. 142–145.

    Article  CAS  Google Scholar 

  • Logvinenko, N.V. and Sergeeva, E.I., Metody opredeleniya osdochnykh porod: uchebnoe posobie dlya vuzov (The Methods for Analysis of Sediments: Manual for High Education Students), Leningrad: Nedra, 1985.

    Google Scholar 

  • Makeeva, A.P. and Pavlov, D.S., Morphological characteristics and general features for determination of eggs of Russian pelagic freshwater fishes, Vopr. Ikhtiol., 2000, vol. 40, no. 6, pp. 780–791.

    Google Scholar 

  • Makeeva, A.P., Pavlov, D.S., and Pavlov, D.A., Atlas molodi presnovodnykh ryb Rossii (Atlas of Freshwater Fish Juveniles of Russia), Moscow: KMK, 2011.

    Google Scholar 

  • Mellinger, J., La flottabilité des oeufs de téléostéens, Ann. Biol., 1994, vol. 33, no. 3, pp. 117–138.

    Google Scholar 

  • Moitra, A., Ghosh, T.K., Pandey, A., and Munshi, J.S.D., Scanning electron microscopy of the post-embryonic stages of the climbing perch, Anabas testudineus, Jpn. J. Ichthyol., 1987, vol. 34, no. 1, pp. 53–58.

    Google Scholar 

  • Morioka, S., Ito, S., Kitamura, S., and Vongvichith, B., Growth and morphological development of laboratoryreared larval and juvenile climbing perch Anabas testudineus, Ichthyol. Res., 2009, vol. 56, no. 2, pp. 162–171.

    Article  Google Scholar 

  • Nissling, A., Kryvi, H., and Vallin, L., Variation in egg buoyancy of Baltic cod Gadus morhua and its implications for egg survival in prevailing conditions in the Baltic Sea, Mar. Ecol.: Progr. Ser., 1994, vol. 110, pp. 67–74.

    Article  Google Scholar 

  • Ospina-lvarez, A., Palomera, I., and Parada, C., Changes in egg buoyancy during development and its effects on the vertical distribution of anchovy eggs, Fish. Res., 2012, vols. 117–118, pp. 86–95.

    Article  Google Scholar 

  • Palla, B.J. and Shah, D.O., Stabilization of high ionic strength slurries using the synergistic effects of a mixed surfactant system, J. Colloid Interface Sci., 2000, vol. 223, pp. 102–111.

    Article  CAS  PubMed  Google Scholar 

  • Power, J.H., Morriwson, W.L., and Zeringue, J., Determining the mass, volume, density, and weight in water of small zooplankters, Mar. Biol., 1991, vol. 110, pp. 267–271.

    Article  Google Scholar 

  • Saborido-Rey, F., Kjesbu, O.S., and Thorsen, A., Buoyancy of Atlantic cod larvae in relation to developmental stage and maternal influences, J. Plankton Res., 2003, vol. 25, no. 3, pp. 291–307.

    Article  Google Scholar 

  • Smalley, M.V., Clay Swelling and Colloid Stability, Boca Raton, FL: CRC Press, 2006.

    Google Scholar 

  • Soin, S.G., Prisposobitel’nye osobennosti razvitiya ryb (Adaptive Features of Fish Development), Moscow: Mosk. Gos. Univ., 1968

    Google Scholar 

  • Soin, S.G., Avni, A.A., and Dorbachev, V.P., Adaptive features of development of climbing perches (Anabantidae), Vopr. Ikhtiol., 1973, vol. 13, no. 6(83), pp. 1056–1064.

    Google Scholar 

  • Solemdal, P., The effect of salinity on buoyancy, size, and development of flounder eggs, Sarsia, 1967, vol. 29, no. 1, pp. 431–442.

    Article  Google Scholar 

  • Sundby, S., A one-dimensional model for the vertical distribution of pelagic fish eggs in the mixed layer, Deep-Sea Res., 1983, vol. 30, pp. 645–661.

    Article  Google Scholar 

  • Zalina, I., Saad, C.R., Christianus, A., and Harmin, S.A., Induced breeding and embryonic development of climbing perch (Anabas testudineus, Bloch), J. Fish. Aquat. Sci., 2012, vol. 7, no. 5, pp. 291–306.

    Article  Google Scholar 

  • Zotin, A.I., Fiziologiya vodnogo obmena u zarodyshei ryb i kruglorotykh (Physiology of Water Exchange in Fish Embryos and Cyclostomata), Moscow: Akad. Nauk SSSR, 1961.

    Google Scholar 

  • Zworykin, D.D., Reproduction and spawning behavior of the climbing perch Anabas testudineus (Perciformes, Anabantidae) in an aquarium, J. Ichthyol., 2012, vol. 52, no. 6, pp. 379–388.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. F. Dzerzhinskiy.

Additional information

Published in Russian inVoprosy Ikhtiologii, 2016, Vol. 56, No. 1, pp. 86–94.

The article was translated by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzerzhinskiy, K.F. Evaluation of buoyancy dynamics in the early ontogenesis of climbing perch Anabas testudineus (Anabantidae). J. Ichthyol. 56, 133–140 (2016). https://doi.org/10.1134/S0032945216010033

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032945216010033

Keywords

Navigation