Journal of Ichthyology

, Volume 50, Issue 11, pp 1021–1029 | Cite as

Taste preferences and feeding behavior of the stone loach Barbatula barbatula (Balitoridae, Cypriniformes) after partial deprivation of circum-mouth external gustatory and tactile receptors

Article

Abstract

Comparative study of the feeding behavior and gustatory preferences mediated by extraoral and intraoral gustatory reception in the stone loach Barbatula barbatula in the norm and 1–6 months after extirpation of all three pairs of barbels was performed. It was found that partial loss of external gustatory receptors and the sensory deficit caused by it do not lead to any noticeable disturbances of the ability of fish to evaluate taste properties of food objects (artificial agar-agar pellets containing L-isomers of alanine, lysine, cysteine or an water extract of chironomid larvae) and make an adequate decision of their grasping or ignoring and swallowing or refusing. The extirpation of the barbels does not influence feeding behavior related to determination by fish of the taste properties of pellets and completely retains in its ritual an obligatory preliminary examination of the food object using external gustatory reception. It is suggested that external taste buds having different localization are equally capable of providing for fish a preliminary evaluation of the taste properties of the object. After extirpation of the barbels, the efficiency of grasping pellets decreases in fish, which indicates an important role of tactile reception in the determination of the site of location of the food object and in providing of the accuracy of the hunter’s dart in fish with a weak vision development.

Key words

chemoreception mechanoreception gustatory system tactile reception taste preferences taste attractiveness feeding behavior behavior of food testing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. P. Andriashev, “The Role of Sense Organs in Finding Food in Silver Rockling,” Zh. Obshch. Biol. 5(2), 123–127 (1944a).Google Scholar
  2. 2.
    A. P. Andriashev, “Methods of Food Detection in Goatfish Mullus barbatus ponticus,” Zh. Obshch. Biol. 5(3), 193–196 (1944b).Google Scholar
  3. 3.
    H. Aquirre and A. Lombarte, “Distribution Pattern of Taste Buds along Hyoidal Barbels of Mullus barbatus and M. surmuletus,” Brain Behav. Evol. 56, 323–329 (2000).CrossRefGoogle Scholar
  4. 4.
    M. P. Aronov, “On External Gustatory Apparatus of the Silver Rockling,” Nauch. Dokl. Vyssh. Shk., Biol. Nauki, No. 4, 38–41 (1959).Google Scholar
  5. 5.
    M. P. Aronov, “The Role of Sense Organs in Food Search in Fish,” Usp. Sovrem. Biol. 54(1)4), 128–145 (1962).Google Scholar
  6. 6.
    M. P. Aronov, “Materials on Study of the Role of Sense Organs in Food Search by Some Black Sea Fish,” Tr. Sevastop. Biostantsii 15, 392–409 (1964).Google Scholar
  7. 7.
    J. Atema, “Structures and Functions of the Sense of Taste in the Catfish (Ictalurus natalis),” Brain Behav. Evol. 4, 273–294 (1971).CrossRefPubMedGoogle Scholar
  8. 8.
    J. Atema, “Chemical Senses, Chemical Signals and Feeding Behaviour in Fishes,” in Fish Behaviour and Its Use in the Capture and Culture of Fishes (Manila, 1980), pp. 57–101.Google Scholar
  9. 9.
    D. M. Bailey, H.-J. Wagner, A. J. Jamieson, et al., “A Taste of the Deep-Sea: The Roles of Gustatory and Tactile Searching behaviour in the Grenadier Fish Coryphaenoides armatus,” in Deep Sea Research. Part I, Oceanograph. Res. Pap. 54(1), 99–108 (2007).CrossRefGoogle Scholar
  10. 10.
    J. E. Bardach, J. H. Todd, and R. K. Crickmer, “Orientation by Taste in Fish of Genus Ictalurus,” Science 155, 1276–1278 (1967).CrossRefPubMedGoogle Scholar
  11. 11.
    M. A. Biedenbach, “Functional Properties of Barbel Mechanoreceptors in Catfish,” Brain Res. 27, 360–364 (1971).CrossRefPubMedGoogle Scholar
  12. 12.
    A. J. Booth, “Microstructure and Distribution of Epidermal Taste-Buds on the Natal Mountain Catfish Amphilius natalensis,” S. African J. Sci. 92, 495–496 (1996).Google Scholar
  13. 13.
    J. Caprio, J. G. Brand, J. H. Teeter, et al., “The Taste System of the Channel Catfish: from Biophysics to Behavior,” Trends Neurosci. 16(5), 192–197 (1993).CrossRefPubMedGoogle Scholar
  14. 14.
    C. J. Davenport and J. Caprio, “Taste and Tactile Recordings from the Ramus Recurrents Facialis Innervating Flank Taste Buds in the Catfish,” J. Comp. Physiol. 147, 217–229 (1982).CrossRefGoogle Scholar
  15. 15.
    G. V. Devitsina, “Adaptive Variability of the Reception Region of the Gustatory System in Carp (Cyprinus carpio, Cyprinidae, Teleostei) after Chronic Anosmia,” Zh. Evol. Biokhim. Fiziol. 42(6), 289–294 (2006).Google Scholar
  16. 16.
    G. V. Devitsina and A. A. Kazhlaev, “Development of Chemosensory Organs in Siberian Sturgeon Acipenser baeri and Starred Sturgeon A. stellatus,” Vopr. Ikhtiol. 32(5), 167–175 (1992).Google Scholar
  17. 17.
    G. V. Devitsina and E. A. Marusov, “Interaction of Chemosensory Systems in the Feeding Behavior of Fish,” Usp. Sovrem. Biol. 127(4), 387–395 (2007).Google Scholar
  18. 18.
    C. Ducros, “Les Barbillons et l’Organ Palatin de Misgurnus fossilis Linne et de Cobitis barbatula Linne,” Travaux Lab. d’Hydrobiol. Piscicult. l’Universitede Grenoble 45–46, 55–70 (1954).Google Scholar
  19. 19.
    G. K. Essick, C. C. Chen, and D. G. Kelly, “A Letter-Recognition Task to Assess Lingual Tactile Acuity,” J. Oral Maxillofac. Surg. 57, 1324–1330 (1999).CrossRefPubMedGoogle Scholar
  20. 20.
    T. E. Finger, “Gustatory Pathways in the Bullhead Catfish. 1. Connections of the Anterior Ganglion,” J. Comp. Neurol. 165, 513–526 (1976).CrossRefPubMedGoogle Scholar
  21. 21.
    T. E. Finger, “Sorting Food from Stones: The Vagal Taste System in Goldfish, Carassius auratus,” J. Comp. Neurol. 194A, 135–143 (2008).Google Scholar
  22. 22.
    H. Fox, “Barbels and Barbel-Like Tentacular Structures in Sub-Mammalian Vertebrates; a Review,” Hydrobiologia 403, 153–193 (1999).CrossRefGoogle Scholar
  23. 23.
    A. Gomahr, M. Palzenberger, and K. Kotrschal, “Density and Distribution of External Taste Buds in Cyprinids,” Environ. Biol. Fish. 33(1–2), 125–134 (1992).CrossRefGoogle Scholar
  24. 24.
    E.-H. Hamdani, A. Kasumyan, and K. B. Døving, “Is Feeding Behaviour in Crucian Carp Mediated by the Lateral Olfactory Tract?,” Chem. Senses 26(9), 1133–1138 (2001).CrossRefPubMedGoogle Scholar
  25. 25.
    R. Harvey and R. S. Batty, “Cutatenous Taste Buds in Cod,” J. Fish. Biol. 53(1), 138–149 (1998).CrossRefGoogle Scholar
  26. 26.
    R. Harvey and R. S. Batty, “Cutatenous Taste Buds in Gadoid Fishes,” J. Fish. Biol. 60(3), 583–592 (2002).CrossRefGoogle Scholar
  27. 27.
    K. Holland, “Chemosensory Orientation to Food by a Hawaiian Goatfish (Parupeneus porphyreus, Mullidae),” J. Chem. Ecol. 4(2), 173–186 (1978).CrossRefGoogle Scholar
  28. 28.
    J. Janssen, M. Slattery, and W. R. Jones, “Locomotion and Feeding Responses to Mechanical Stimuli in Histiodraco velifer (Artedidraconidae),” Copeia. 3, 885–889 (1993).CrossRefGoogle Scholar
  29. 29.
    P. B. Johnsen and J. H. Teeter, “Spatial Gradient Detection of Chemical Cues by Catfish,” J. Comp. Physiol. 140, 95–99 (1980).CrossRefGoogle Scholar
  30. 30.
    J. S. Kanwal and T. E. Finger, “Central Representation and Projections of Gustatory Systems,” in Fish Chemoreception, Ed. by T.J. Hara (Chapman and Hall, London, 1992), pp. 79–102.Google Scholar
  31. 31.
    B. G. Kapoor, H. E. Evans, and R. A. Pevzner, “The Gustatory System in Fish,” Adv. Mar. Biol. 13, 53–108 (1975).CrossRefGoogle Scholar
  32. 32.
    A. Kasumyan, “Sturgeon Food Searching Behaviour Evoked by Chemical Stimuli: A Reliable Sensory Mechanism,” J. Appl. Ichthyol. 18, 685–690 (2002).CrossRefGoogle Scholar
  33. 33.
    A. O. Kasumyan, “The Lateral Line in Fish: Structure, Function, and Role in Behavior,” J. Ichthyol. 43Suppl. 2, S175–S213 (2003).Google Scholar
  34. 34.
    A. O. Kasumyan and G. V. Devitsina, “The Effect of Olfactory Deprivation on Chemosensory Sensitivity and the State of Taste Receptors of Acipenserids,” Vopr. Ikhtiol. 37(6), 823–835 (1997) [J. Ichthyol. 37 (9), 786–798 (1997)].Google Scholar
  35. 35.
    A. O. Kasumyan and E. A. Marusov, “Complementarity of Chemosensory Systems in Provision of Search Behavioral Response to Food Chemical Signals in Bearded Loach Barbatula barbatula,” Dokl. Akad. Nauk 402(2), 279–281 (2005).Google Scholar
  36. 36.
    A. O. Kasumyan and E. A. Marusov, “Chemoreception in Chronically Anosmiated Fish: A Phenomenon of Compensatory Development of the Gustatory System,” Vopr. Ikhtiol. 47(5), 684–693 (2007) [J. Ichthyol. 47 (8), 647–655 (2007)].Google Scholar
  37. 37.
    A. O. Kasumyan and A. M. Kh. Morsi, “Taste Sensitivity of Common Carp Cyprinus carpio to Free Amino Acids and Classical Taste Substances,” Vopr. Ikhtiol. 36(3), 386–399 (1996) [J. Ichthyol. 36 (5), 391–403 (1996)].Google Scholar
  38. 38.
    A. O. Kasumyan and N. I. Pashchenko, “Evaluation of the Role of Olfaction in the Defense Response of the Grass Carp Ctenopharyngodon idella (Val.) (Cyprinidae) to Alarm Pheromone,” Vopr. Ikhtiol. 22(2), 303–307 (1982).Google Scholar
  39. 39.
    A. O. Kasumyan and N. I. Pashchenko, “Olfactory Way of Perception by Fish of Alarm Cairomone,” Vestn. Mosk. Gos. Univ., Ser. 16 (Biologiya), No. 3, 51–54 (1985).Google Scholar
  40. 40.
    A. O. Kasumyan and S. S. Sidorov, “Gustatory Properties of Free Amino Acids for Juvenile Caspian Trout Salmo trutta caspius Kessler,” Vopr. Ikhtiol. 34(6), 831–838 (1994).Google Scholar
  41. 41.
    A. O. Kasumyan and S. S. Sidorov, “Taste Preferences and Testing Behavior of Taste Properties of the Feed in Stone Loach Barbatula barbatula (Balitoridae, Cypriniformes),” Vopr. Ikhtiol. 50(5), 708–720 (2010).Google Scholar
  42. 42.
    S. Kiyohara, Y. Sakata, T. Yoshitomi, and J. Tsukahara, “The “Goatee” of Goatfish: Innervation of Taste Buds in the Barbels and Their Representation in the Brain,” Proc. Roy. Soc. London 269B, 1773–1780 (2002).Google Scholar
  43. 43.
    E. B. Lane and M. Whitear, “On the Occurrence of Merkel Cells in the Epidermis of Teleost Fishes,” Cell Tiss. Res. 182, 235–246 (1977).Google Scholar
  44. 44.
    N. R. Liley, K. H. Olsén, C. J. Foote, and G. J. Van Der Kraak, “Endocrine Changes Associated with Spawning Behavior in Male Kokanee Salmon (Oncorhynchus nerka) and the Effects of Anosmia,” Horm. Behav. 27, 470–487 (1993).CrossRefPubMedGoogle Scholar
  45. 45.
    J. Lim and B. G. Green, “Tactile Interaction with Taste Localization: Influence of Gustatory Quality and Intensity,” Chem. Senses. 33, 137–148 (2008).CrossRefPubMedGoogle Scholar
  46. 46.
    A. Lombarte and H. Aquirre, “Quantitative Differences in the Chemoreceptor Systems in the Barbels of Two Species of Mullidae (Mullus surmuletus and M. barbatus) with Different Bottom Habitats,” Mar. Ecol. Prog. Ser. 150, 57–64 (1997).CrossRefGoogle Scholar
  47. 47.
    T. Marui and J. Caprio, “Teleost Gustation,” in Fish Chemoreception, Ed. by T.J. Hara (Chapman and Hall, London, 1992), pp. 171–198.Google Scholar
  48. 48.
    M. I. McCormick, “Development and Changes at Settlement in the Barbel Structure of the Reef Fish, Upeneus tragula (Mullidae),” Environ. Biol. Fish. 37, 269–282 (1993).CrossRefGoogle Scholar
  49. 49.
    A. K. Mittal and M. Whitear, “A Note on Cold Anaesthesia of Poikiloterms,” J. Fish Biol. 13(4), 519–520 (1978).CrossRefGoogle Scholar
  50. 50.
    Y. Morita and T. E. Finger, “Reflex Connections of the Facial and Vagal Gustatory Systems in the Brainstem of the Bullhead Catfish, Ictalurus nebulosus,” J. Comp. Neurol. 231, 547–558 (1985).CrossRefPubMedGoogle Scholar
  51. 51.
    K. H. Olsén, J. T. Järvi, I. Mayer, et al., “Spawning Behaviour and Sex Hormone Levels in Adult and Precocious Brown Trout (Salmo trutta L.) Males and the Effect of Anosmia,” Chemoecology 8, 9–17 (1998).CrossRefGoogle Scholar
  52. 52.
    W. K. Ovalle and S. L. Shinn, “Surface Morphology of Taste Buds in Catfish Barbels,” Cell. Tissue Res. 178, 375–384 (1977).CrossRefPubMedGoogle Scholar
  53. 53.
    N. I. Pashchenko and A. O. Kasumyan, “Degenerative and Recovery Processes in the Olfactory Lining of the Grass Carp Ctenopharyngodon idella (Val.) (Cyprinidae) after the Effect on It of Detergent Triton-X-100,” Vopr. Ikhtiol. 24(1), 128–137 (1984).Google Scholar
  54. 54.
    D. S. Pavlov and A. O. Kasumyan, “Sensory Foundations of the Feeding Behavior of Fish,” Vopr. Ikhtiol. 30(5), 720–732 (1990).Google Scholar
  55. 55.
    D. S. Pavlov, Yu. N. Sbikin, and I. K. Popova, “The Role of Sense Organs in Feeding of Juvenile Acipenserids,” Zool. Zh. 49(6), 872–880 (1970).Google Scholar
  56. 56.
    K. Reutter, “Die Geschmacksknospen des Zwergwelses Amiurus nebulosus (Lesuer). Morphologische und Histochemische Untersuchungen,” Z. Zellforsch. Mikroskop. Anat. 120, 280–308 (1971).CrossRefGoogle Scholar
  57. 57.
    K. Reutter, “Taste Organ in the Barbel of the Bullhead,” in Chemoreception in fishes, Ed. by T.J. Hara (Elsevier, Amsterdam: Elsevier, 1982), pp. 77–91.Google Scholar
  58. 58.
    Y. Sakata, J. Tsukahara, and S. Kyohara, “Distribution of Nerve Fiber in the Barbels of Sea Catfish Plotosus lineatus,” Fish. Sci. 67, 1136–1144 (2001).CrossRefGoogle Scholar
  59. 59.
    S. A. Simon, I. E. de Araujo, J. R. Stapleton, and M. A. Nicolelis, “Multisensory Processing of Gustatory Stimuli,” Chem. Perception 1, 95–102 (2008).CrossRefGoogle Scholar
  60. 60.
    O. B. Stabell, “Olfactory Control of Homing Behaviour in Salmonids,” in Fish Chemoreception, Ed. by T.J. Hara (Chapman and Hall, London, 1992), pp. 249–270.Google Scholar
  61. 61.
    R. W. Van Boven and K. O. Johnson, “The Limit of Tactile Spatial Resolution in Humans: Grating Orientation Discrimination at the Tip, Tongue, and Finger,” Neurology 44, 2361–2366 (1994).PubMedGoogle Scholar
  62. 62.
    V. M. Vinogradova and Yu. B. Manteifel’, “The Role of Chemical Signals in the Sexual Behavior of Guppy Poecilia reticulata Peters (Cyprinodontiformes, Poeciliidae),” Vopr. Ikhtiol. 22(1), 113–119 (1982).Google Scholar
  63. 63.
    B. Vögyi, T. Farkas, and J. Toldi, “Compensation of a Sensory Deficit Inflicted upon Newborn and Adult Animals. A Behavioural Study,” NeuroReport 4, 827–829 (1993).CrossRefGoogle Scholar
  64. 64.
    M. Whitear, “Merkel Cells in Lower Vertebrates,” Arch. Histol. Cytol. 52Suppl., 415–422 (1989).CrossRefPubMedGoogle Scholar
  65. 65.
    M. Whitear, “Solitary Chemosensory Cells,” in Fish Chemoreception, Ed. by T.J. Hara (Chapman and Hall, London, 1992), pp. 103–125.Google Scholar
  66. 66.
    M. C. Whitehead and T. E. Finger, “Gustatory Pathways in Fish and Mammals,” in The Senses: A Comprehensive Reference. Vol. 4. Olfaction and Taste, Ed. by S. Firestein and G.K. Beauchamp (Acad. Press, San Diego, 2008), pp. 237–260.Google Scholar
  67. 67.
    E. Zeiske, “Praedispositionen bei Mollienesia sphenops (Pisces: Poeciliidae) für einen übergang zum Leben in Subterranen Gewüssern,” Z. Vergl. Physiol. 58(1), 190–222 (1968).CrossRefGoogle Scholar
  68. 68.
    A. Yu. Zhuikov, “Method of Fish Anesthesia,” Rybn. Khoz., No. 5, 57 (1989).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • A. O. Kasumyan
    • 1
  • S. S. Sidorov
    • 1
  • E. A. Marusov
    • 1
  1. 1.Biology FacultyMoscow State UniversityMoscowRussia

Personalised recommendations