Journal of Ichthyology

, Volume 50, Issue 8, pp 682–693 | Cite as

Taste preferences and behavior of testing gustatory qualities of food in stone loach Barbatula barbatula (Balitoridae, Cypriniformes)



Extraoral and intraoral taste preferences of stone loach Barbatula barbatula to 21 free amino acid (L-isomers) and 4 classic taste substances were established. It was found that most amino acids (19), as well as citric acid and calcium chloride are suppressants, i.e., significantly decrease grasping of artificial pellets. Such action is most typical of cysteine, glutamine, asparagine, and citric acids. The number of deterrent stimuli among the used substances is smaller than that of suppressants. Only aquatic chironomid extract has positive gustatory properties. The remaining substances have no pronounced taste properties. Touching of a pellet by barbels is an obligatory element of behavior of testing by fish of pellet properties always preceding grasping. It was found that the subsequent development of feeding behavior of fish proceeds according to one of the possible behavioral stereotypes of testing by fish of taste properties of food items. The revealed behavioral response stereotypes differ in the number of manipulations performed by fish with a food item (rejections and repeated graspings) and in the duration of its retention. Stereotype selection is determined by the extraoral taste attractiveness of the food item for fish.

Key words

chemoreception gustatory system taste preferences feeding behavior food testing behavior behavioral stereotypes amino acids classic taste substances 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. P. Andriashev, “The Role of Sense Organs in Search for Food in Silver Rockling,” Zh. Obshch. Biol. 5(2), 123–127 (1944a).Google Scholar
  2. 2.
    A. P. Andriashev, “Methods of Finding Food in Goatfish Mullus barbatus ponticus,” Zh. Obshch. Biol. 5(3), 193–196 (1944b).Google Scholar
  3. 3.
    H. Aquirre and A. Lombarte, “Distribution Pattern of Taste Buds along Hyoidal Barbels of Mullus barbatus and M. surmuletus,” Brain. Behav. Evol. 56, 323–329 (2000).CrossRefGoogle Scholar
  4. 4.
    J. Atema, “Structures and Functions of the Sense of Taste in the Catfish (Ictalurus natalis),” J. High Resolut. Chromatogr. Chromatogr. Commun. 4, 273–294 (1971).Google Scholar
  5. 5.
    J. E. Bardach and J. Case, “Sensory Capabilities of the Modified Fins of Squirrel Hake (Urophycis chuss) and Searobins (Prionotus carolinus and P. evolans),” Copeia, No. 2, 194–206 (1965).Google Scholar
  6. 6.
    W. Bateson, “The Sense-Organs and Perceptions of Fishes; with Remarks on the Supply of Bait,” J. Mar. Biol. Assoc. UK 1, 225–256 (1890).CrossRefGoogle Scholar
  7. 7.
    A. J. Booth, “Microstructure and Distribution of Epidermal Taste-Buds on the Natal Mountain Catfish Amphilius natalensis,” S. Afric. J. Sci. 92, 495–496 (1996).Google Scholar
  8. 8.
    V. M. Brawn, “Feeding Behaviour of Cod (Gadus morhua),” J. Fish. Res. Board Can. 26(3), 583–596 (1969).Google Scholar
  9. 9.
    J. Caprio, J. G. Brand, J. H. Teeter, T. Valentincic, et al., “The Taste System of the Channel Catfish: from Biophysics to Behavior,” Trends Neurosci. 16(5), 192–197 (1990).CrossRefGoogle Scholar
  10. 10.
    W. E. S. Carr, J. C. Netherton, R. A. Gleeson, and C. D. Derby, “Stimulants of Feeding Behavior in Fish: Analysis of Tissues of Diverse Marine Organisms,” Biol. Bull. 190, 149–160 (1996).CrossRefGoogle Scholar
  11. 11.
    G. V. Devitsina, “Adaptive Variability of the Receptor Region of the Gustatory System in Carp (Cyprinus carpio, Cyprinidae, Teleostei) after Chronic Anosmia,” Zh. Evol. Biokhim. Fiziol. 42(6), 289–294 (2006).Google Scholar
  12. 12.
    G. V. Devitsina and A. A. Kazhlaev, “Development of Chemosensory Organs in Siberian Sturgeon Acipenser baeri and Starred Sturgeon A. stellatus,” Vopr. Ikhtiol. 32(5), 167–175 (1992).Google Scholar
  13. 13.
    C. Ducros, “Les Barbillons et l’Organ Palatin de Misgurnus fossilis Linne et de Cobitis barbatula Linne,” Travaux Lab. d’Hydrobiol. Piscicult. l’Universitede Grenoble 45–46, 55–70 (1954).Google Scholar
  14. 14.
    T. Ellis and R. N. Gibson, “Predation on 0-Group Flatfishes by 0-Group Cod: Handling Times and Size-Selection,” Mar. Ecol.: Proc. Ser. 149, 83–90 (1997).CrossRefGoogle Scholar
  15. 15.
    H. M. Evans, Brain and Body of Fish. A Study of Brain Pattern in Relation to Hunting and Feeding in Fish (Tech. Press Ltd, London, 1940).Google Scholar
  16. 16.
    T. E. Finger, “Sorting Food from Stones: The Vagal Taste System in Goldfish, Carassius auratus,” J. Comp. Physiol. A 194, 135–143 (2008).CrossRefGoogle Scholar
  17. 17.
    T. E. Finger, S. K. Drake, K. Kotrschal, et al., “Postlarval Growth of the Peripheral Gustatory System in the Channel Catfish, Ictalurus punctatus,” J. High Resolut. Chromatogr. Chromatogr. Commun. 314, 55–66 (1991).Google Scholar
  18. 18.
    P. Fischer, “Test of Competitive Interactions for Space between Two Benthic Fish Species, Burbot lota lota and Stone Loach Barbatula barbatula,” Environ. Biol. Fish 58, 439–446 (2000).CrossRefGoogle Scholar
  19. 19.
    E. S. Fokina and A. O. Kasumyan, “Comparison of Taste Preferences in Different Generations of the Population of Nine-Spined Stickleback Pungitius pungitius (Gasterosteiformes),” Dokl. Akad. Nauk 389(4), 570–573 (2003).Google Scholar
  20. 20.
    H. Fox, “Barbels and Barbel-Like Tentacular Stuctures in Sub-Mammalian Vertebrates: A Review,” Hydrobiologia 403, 153–193 (1999).CrossRefGoogle Scholar
  21. 21.
    A. Gomahr, M. Palzenberger, and K. Kotrschal, “Density and Distribution of External Taste Buds in Cyprinids,” Environ. Biol. Fish 33(1/2), 125–134 (1992).CrossRefGoogle Scholar
  22. 22.
    B. P. Halpern, “Constraints Imposed on Taste Physiology by Human Taste Reaction Time Data,” Neurosci. Behav. Res. 10, 135–151 (1986).Google Scholar
  23. 23.
    A. Hansen, K. Reutter, and E. Zeiske, “Taste Bud Development in the Zebrafish, Danio rerio,” Dev. Dyn. 223, 483–496 (2002).CrossRefPubMedGoogle Scholar
  24. 24.
    R. Harvey and R. S. Batty, “Cutatenous Taste Buds in Cod,” J. Fish. Biol. 53(1), 138–149 (1998).CrossRefGoogle Scholar
  25. 25.
    R. Harvey and R. S. Batty, “Cutatenous Taste Buds in Gadoid Fishes,” J. Fish. Biol. 60(3), 583–592 (2002).CrossRefGoogle Scholar
  26. 26.
    A. A. Ibrahim and F. A. Huntingford, “Experience of Natural Prey and Feeding Efficiency in Three-Spined Sticklebacks (Gasterosteus aculeatus (L.),” J. Fish. Biol. 41, 619–625 (1992).CrossRefGoogle Scholar
  27. 27.
    M. Jakubowski and M. Whitear, “Comparative Morphology and Cytology of Taste Buds in Teleosts,” Z. Mikrosk.-Anat. Forsch. 104(4), 529–560 (1990).Google Scholar
  28. 28.
    B. G. Kapoor, H. E. Evans, and R. A. Pevzner, “The Gustatory System in Fish,” Adv. Mar. Biol. 13, 53–108 (1975).CrossRefGoogle Scholar
  29. 29.
    A. O. Kasumyan, “Gustatory Reception and Feeding Behavior of Fish,” Vopr. Ikhtiol. 37(1), 78–93 (1997) [J. Ichthyol. 37 (1), 72–86 (1997)].Google Scholar
  30. 30.
    A. O. Kasumyan, “Olfaction and Taste Senses in Sturgeon Behaviour,” J. Appl. Ichthyol. 15, 228–232 (1999).CrossRefGoogle Scholar
  31. 31.
    A. Kasumyan, “Sturgeon Food Searching Behaviour Evoked by Chemical Stimuli: A Reliable Sensory Mechanism,” J. High Resolut. Chromatogr. Chromatogr. Commun. 18, 685–690 (2002).Google Scholar
  32. 32.
    A. O. Kasumyan and G. V. Devitsina, “The Effect of Olfactory Deprivation on Chemosensory Sensitivity and the State of Taste Receptors of Acipenserids,” Vopr. Ikhtiol. 37(6), 823–835 (1997) [J. Ichthyol. 37 (9), 786–798 (1997)].Google Scholar
  33. 33.
    A. Kasumyan and K. B. Døing, “Taste Preferences in Fish,” Fish Fisheries 4(4), 289–347 (2003).CrossRefGoogle Scholar
  34. 34.
    A. O. Kasumyan and A. A. Kazhlaev, “Formation of Search Behavioral Response and Olfactory Sensitivity to Food Chemical Signals in the Ontogenesis of Acipenserids,” Vopr. Ikhtiol. 33(2), 310–320 (1993a).Google Scholar
  35. 35.
    A. O. Kasumyan and A. A. Kazhlaev, “Behavioral Responses of Early Juveniles of Siberian Sturgeon Acipenser baeri and Starred Sturgeon A. stellatus (Acipenseridae) to Substances Causing Main Types of Taste Sensations,” Vopr. Ikhtiol. 33(3), 427–436 (1993b).Google Scholar
  36. 36.
    A. O. Kasumyan and E. A. Marusov, “Behavioral Taste Response of the Minnow Phoxinus phoxinus (Cyprinidae) to Chemical Signals under Normal Conditions and After Acute and Chronic Anosmia,” Vopr. Ikhtiol. 42(5), 684–696 (2002) [J. Ichthyol. 42 (8), 659–670 (2002)].Google Scholar
  37. 37.
    A. O. Kasumyan and E. A. Marusov, “Behavioral Responses of Intact and Chronically Anosmiated Minnows Phoxinus phoxinus (Cyprinidae) to Free Amino Acids,” Vopr. Ikhtiol. 43(4), 528–539 (2003) [J. Ichthyol. 43 (7), 528–538 (2003)].Google Scholar
  38. 38.
    A. O. Kasumyan and E. A. Marusov, “Complementarity of Chemosensory Systems in Provision of Search Behavioral Response to Food Chemical Signals in Bearded Stone Loach Barbatula barbatula,” Dokl. Akad. Nauk 402(2), 279–281 (2005).Google Scholar
  39. 39.
    A. O. Kasumyan and E. S. Mikhailova, “The Effect of Water Salinity on Taste Preferences and Feeding Behavior of Three-Spined Stickleback Gasterosteus aculeatus,” Dokl. Akad. Nauk 432(1), 134–137 (2010).Google Scholar
  40. 40.
    A. O. Kasumyan and A. M. Kh. Morsi, “Taste Sensitivity of Common Carp Cyprinus carpio to Free Amino Acids and Classical Taste Substances,” Vopr. Ikhtiol. 36(3), 386–399 (1996) [J. Ichthyol. 36 (5), 391–403 (1996)].Google Scholar
  41. 41.
    A. O. Kasumyan and A. M. Kh. Morsi, “Taste Preferences for Classical Taste Substances in Juveniles of Grass Carp Ctenopharyngodon idella (Cyprinidae, Pisces) Cultivated on Animal and Vegetation Food,” Dokl. Akad. Nauk 357(2), 284–286 (1997).Google Scholar
  42. 42.
    A. O. Kasumyan, E. A. Marusov, and S. S. Sidorov, “Feeding Behavior of the Ruffe Gymnocephalus cernuus Triggered by Olfactory and Gustatory Stimulants,” J. Ichthyol. 43(Suppl. 2), S247–S254 (2003).Google Scholar
  43. 43.
    A. O. Kasumyan, E. A. Marusov, and S. S. Sidorov, “The Effect of Food Odor Background on Gustatory Preferences and Gustatory Behavior of Carp Cyprinus carpio and Cod Gadus morhua,” Vopr. Ikhtiol. 49(4), 528–540 (2009) [J. Ichthyol. 49 (6), 469–481 (2009)].Google Scholar
  44. 44.
    A. Kasumyan and E. Mikhailova, “Comparison of Taste Preferences and Behavioral Taste Response in the Nine-Spined Stickleback Pungitius pungitius from the Moscow River and the White Sea,” in Fish Chemosenses, Ed. by K. Reutter and B. G. Kapoor (Sci. Publ. Inc., Einfield, 2005), pp. 305–324).Google Scholar
  45. 45.
    A. O. Kasumyan and E. V. Nikolaeva, “Comparative Analysis of Taste Preferences in Fishes with Different Ecology and Feeding,” J. Ichthyol. 42(Suppl. 2), S203–S214 (2002).Google Scholar
  46. 46.
    A. O. Kasumyan and O. M. Prokopova, “Taste Preferences and the Dynamics of Behavioral Taste Response in the Tench Tinca tinca (Cyprinidae),” Vopr. Ikhtiol. 41(5), 670–685 (2001) [J. Ichthyol. 41 (8), 640–653 (2001)].Google Scholar
  47. 47.
    A. O. Kasumyan and S. S. Sidorov, “Taste Properties of Free Amino Acids for Juveniles of Caspian Trout Salmo trutta caspius Kessler,” Vopr. Ikhtiol. 34(6), 831–838 (1994).Google Scholar
  48. 48.
    A. O. Kasumyan and S. S. Sidorov, “The Palatability of Free Amino Acids and Classical Taste Substances in Frolich Char, Salvelinus alpinus erythrinus (Georgi),” Nordic J. Freshwater Res., No. 71, 320–323 (1995).Google Scholar
  49. 49.
    A. O. Kasumyan and S. S. Sidorov, “Taste Preferences of the Trout Salmo trutta of Three Geographically Isolated Populations,” Vopr. Ikhtiol. 45(1), 117–130 (2005a) [J. Ichthyol. 45 (1), 111–123 (2005a).Google Scholar
  50. 50.
    A. O. Kasumyan and S. S. Sidorov, “Taste Preferences in Fish with Chronic Anosmia,” Vopr. Ikhtiol. 45(3), 539–547 (2005b) [J. Ichthyol. 45 (7), 526–534 (2005b)].Google Scholar
  51. 51.
    A. O. Kasumyan and S. S. Sidorov, “Effect of Starvation on Taste Preferences and Behavior in Testing Food Objects for Carp Cyprinus carpio,” Vopr. Ikhtiol. 50(3), 388–399 (2010).Google Scholar
  52. 52.
    A. O. Kasumyan, S. S. Sidorov, N. I. Pashchenko, and A. V. Nemchinov, “Extraoral and Intraoral Taste Sensitivity of Juveniles of Russian Sturgeon Acipenser gueldenstaedti to Amino Acids,” Dokl. Akad. Nauk SSSR 322(1), 193–195 (1992).Google Scholar
  53. 53.
    A. O. Kasumyan, S. S. Sidorov, and N. I. Pashchenko, “The Effect of Water Temperature on the Taste Sensitivity of Juveniles of’ Starred Sturgeon Acipenser stellatus to Free Amino Acids,” Dokl. Akad. Nauk 331(2), 248–250 (1993).Google Scholar
  54. 54.
    A. O. Kasumyan, L. R. Taufik, and Yu. V. Protsenko, “Olfactory and Taste Sensitivity of Juveniles of Acipenserids to Amino Acids,” in Biological Foundations of Commercial Sturgeon Husbandry (VNIRO, Moscow, 1991), pp. 37–53.Google Scholar
  55. 55.
    A. Lombarte and H. Aquirre, “Quantitative Differences in the Chemoreceptor Systems in the Barbels of Two Species of Mullidae (Mullus surmuletus and M. barbatus) with Different Bottom Habitats,” Mar. Ecol.: Proc. Ser. 150, 57–64 (1997).CrossRefGoogle Scholar
  56. 56.
    M. I. McCormick, “Development and Changes at Settlement in the Barbel Structure of the Reef Fish,iUpeneus tragula (Mullidae),” Environ. Biol. Fish 37, 269–282 (1993).CrossRefGoogle Scholar
  57. 57.
    M. I. McCormick, “Development and Changes at Settlement in the Barbel Structure of the Reef Fish, Upeneus tragula (Mullidae),” Environ. Biol. Fish 37, 269–282 (1993).CrossRefGoogle Scholar
  58. 58.
    P. Michel and T. Oberdorff, “Feeding Habits of Fourteen European Freshwater Fish Species,” Cybium 19(1), 5–46 (1995).Google Scholar
  59. 59.
    E. S. Mikhailova, Candidate’s Dissertation in Biology (Mosk. Gos. Univ., Moscow, 2009).Google Scholar
  60. 60.
    E. S. Mikhailova and A. O. Kasumyan, “Comparison of Taste Preferences in Three-Spined Gasterosteus aculeatus and Nine-Spined Pungitius pungitius Sticklebacks from White Sea Basin,” J. Ichthyol. 46(Suppl. 2), S151–S160 (2006).CrossRefGoogle Scholar
  61. 61.
    E. V. Nikolaeva and A. O. Kasumyan, “Comparative Analysis of the Taste Preferences and Behavioral Responses to Gustatory Stimuli in Females and Males of the Guppy Poecilia reticulata,” Vopr. Ikhtiol. 40(4), 560–565 (2000) [J. Ichthyol. 40 (6), 479–454 (2000)].Google Scholar
  62. 62.
    A. D. Nunn, J. P. Harvey, and I. G. Cowx, “Benefits to 0+ Fishes of Connecting Man-Made Waterbodies to the Lower River Trent, England,” River. Res. Applic. 23, 361–376 (2007).CrossRefGoogle Scholar
  63. 63.
    W. K. Ovalle and S. L. Shinn, “Surface Morphology of Taste Buds in Catfish Barbels,” Cell. Tiss. Res. 178, 375–384 (1977).CrossRefGoogle Scholar
  64. 64.
    G. H. Parker, “The Relations of Smell, Taste, and the Common Chemical Sense in Vertebrates,” J. Acad. Nat. Sci. Phila. Ser. 15, 221–234 (1912).Google Scholar
  65. 65.
    D. S. Pavlov, “Experiments on the Feeding of Burbot Lota lota (L.) at Different Illumination,” Nauch. Dokl. Vysch. Shk., Biol. Nauki, No. 4, 42–46 (1959).Google Scholar
  66. 66.
    D. S. Pavlov, “Some Data on Olfaction of Silver Rockling (Gaidropsarus mediterraneus) and Its Importance in Search for Food,” Vopr. Ikhtiol. 2(2), 361–366 (1962).Google Scholar
  67. 67.
    D. S. Pavlov, Optomotor Response and Specific Features of Orientation of Fish in a Water Stream (Nauka, Moscow, 1970) [in Russian].Google Scholar
  68. 68.
    D. S. Pavlov, Biological Foundations of Behavior Control in Fish in a Water Stream (Nauka, Moscow, 1979) [in Russian].Google Scholar
  69. 69.
    D. S. Pavlov and A. O. Kasumyan, “The Structure of the Feeding Behavior of Fishes,” Vopr. Ikhtiol. 38(1), 123–136 (1998) [J. Ichthyol. 38 (1), 116–128 (1998)].Google Scholar
  70. 70.
    D. S. Pavlov, Yu. N. Sbikin, and I. K. Popova, “The Role of Sense Organs in Feeding of Juveniles of Acipenserids,” Zool. Zh. 49(6), 872–880 (1970).Google Scholar
  71. 71.
    J. Shamushaki, B. Abtakhi, A. O. Kasumyan, et al., “Taste Attractiveness of Free Amino Acids for Juveniles of Persian Sturgeon Acipenser persicus,” Vopr. Ikhtiol. 48(1), 130–140 (2008).Google Scholar
  72. 72.
    P. W. Sorensen and J. Caprio, The Physiology of Fishes, Ed. by D. H. Evans (CRC Press, Boca Raton, 1998), pp. 375–405.Google Scholar
  73. 73.
    V. D. Spanovskaya, “Family Cobitidae),” in Animal Life. Vol. 4. Issue 1. Fish, Ed. by T. S. Rass (Prosveshchenie, Moscow, 1971).Google Scholar
  74. 74.
    N. E. Street and P. J. Hart, “Group Size and Patch Location by the Stone Loach, Nemachilus barbatulus, a Non-Visually Foraging Predator,” J. Fish. Biol. 27(6), 785–792 (1985).CrossRefGoogle Scholar
  75. 75.
    D. M. Ware, “Predation by Rainbow Trout (Salmo gairdneri): The Influence of Hunger, Prey Density, and Prey Size,” J. Fish. Res. Board Can. 29, 1193–1201 (1972).Google Scholar
  76. 76.
    M. Whitear, Fish Chemoreception, Ed. by T. J. L. Hara (Chapman and Hall, London, 1992), pp. 103–125.Google Scholar
  77. 77.
    G. Zhang, S. Deng, H. Zhang, et al., “Distribution of Different Taste Buds and Expression of α-Gustducin in the Barbels of Yellow Catfish (Pelteobagrus fulvidraco),” Fish Physiol. Biochem. 32, 55–62 (2006).CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations