Advertisement

Journal of Ichthyology

, Volume 50, Issue 5, pp 396–401 | Cite as

Effect of thyroid hormones on activity dynamics of enzymes of intestinal mucosa of juvenile roach Rutilus rutilus

  • V. V. Kuz’mina
  • B. A. Levin
  • Lyu Vei
  • P. V. Rusanova
Article

Abstract

The effect of thyroid hormones on activity dynamics of enzymes (proteinases and glycosidases) of intestinal mucosa of juvenile roach Rutilius rutilus was investigated. Application of substances increasing and decreasing the level of thyroid hormones in blood plasma significantly influences the growth rate and the activity of proteinases and glycosidases functioning in the intestinal mucosa. In most cases, the activity level of trypsin-like proteinases and the activity of glycosidases in the fish exposed to triiodothyronine were significantly higher than in the control. The activity level of chymotrypsin-like proteinases in fish form the group with exposure of exogenous triiodothyronine only in the end of the experiment surpassed the values of this parameter in the control fish. In the fish developing at deficiency of thyroid hormones, the growth rate and proteinases activity were significantly lower in comparison with the control.

Key words

thyroid hormones digestive enzymes proteinases glycosidases intestine dynamics of enzymatic activity roach 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Anson, “1938. The Estimation of Pepsin, Trypsin, Papain and Cathepsin with Hemoglobin,” J. Gen. Physiol. 22, 79 83 (1938).CrossRefPubMedGoogle Scholar
  2. 2.
    M. L. Blanton and J. L. Specker, “The Hypothalamic-Pituitary-Thyroid (HPT) Axis in Fish and Its Role in Fish Development and Reproduction,” Crit. Rev. Toxicol. 37, 97–115 (2007).CrossRefPubMedGoogle Scholar
  3. 3.
    D. D. Brown, “The Role of Thyroid Hormone in Zebrafish and Axolotl Development,” Proc. Nat. Acad. Sci. USA 94, 13011–13016 (1997).CrossRefPubMedGoogle Scholar
  4. 4.
    N. P. Chernysheva, Hormones in Animals. Introduction into Physiological Endocrinology (Glagol’, St. Petersburg, 1995) [in Russian].Google Scholar
  5. 5.
    A. Heyland, A. M. Reitzel, D. A. Price, and L. L. Moroz, “Endogenous Thyroid Hormone Synthesis in Facultative Planktotrophic Larvae of the Sand Dollar Clypeaster rosaceus: Implications for the Evolutionary Loss of Larval Feeding,” Evol. Dev. 8(6), 568–579 (2006).CrossRefPubMedGoogle Scholar
  6. 6.
    T. N. Jacob, J. P. Pandey, K. Raghuveer, et al., “Thyroxine-Induced Alterations in the Testis and Seminal Vesicles of Air-Breathing Catfish, Clarias gariepinus,” Fish Physiol. Biochem. 31(2–3), 271–274 (2005).CrossRefPubMedGoogle Scholar
  7. 7.
    E. G. T. de Jesus, J. D. Toledo, and M. S. Simpas, “Thyroid Hormones Promote Early Metamorphosis in Grouper (Epinephelus coioides) Larvae,” Gen. Comp. Endocrinol. 112, 10–16 (1998).CrossRefPubMedGoogle Scholar
  8. 8.
    V. V. Kuz’mina, “Influence of Age on Digestive Enzyme Activity in Some Freshwater Teleosts,” Aquaculture 148, 25–37 (1996).CrossRefGoogle Scholar
  9. 9.
    J. F. Leatherland, “Environmental Physiology of the Teleostean Thyroid Gland: A Review,” Environ. Biol. Fish 7, 83–110 (1982).CrossRefGoogle Scholar
  10. 10.
    B. A. Levin and M. A. Levina, “On Changes in the Number of Scales in the Lateral Line in Siblings of Roach Rutilus rutilus (Ostariophysi, Cyprinidae) during Development at Different Rates of Ontogenesis,” in Materials of the Conference of Young Scientists and PhD Students of the Institute of Ecology and Evolution on Current Problems of Ecology and Evolution (KMK, Moscow, 2008), pp. 214–220.Google Scholar
  11. 11.
    N. Okada, T. Morita, M. Tanaka, and M. Tagawa, “Thyroid Hormone Deficiency in Abnormal Larvae of the Japanese Flounder Paralichthys olivaceus,” Fish. Sci. 71, 107–114 (2005).CrossRefGoogle Scholar
  12. 12.
    N. de Pedro, M. J. Delgado, B. Gancedo, and M. Alonso-Bedate, “Changes in Glucose, Glycogen, Thyroid Activity and Hypothalamic Catecholamines in Tench by Starvation and Refeeding,” Comp. Physiol. Biochem. 173, 475–481 (2003).Google Scholar
  13. 13.
    G. E. Pickford and J. W. Atz, The Physiology of the Pituitary Gland of Fishes (N.Y. Zool. Soc., New York, 1957).Google Scholar
  14. 14.
    D. M. Power, L. Llewellyn, M. Faustino, et al., “Thyroid Hormones in Growth and Development of Fish,” Comp. Biochem. Physiol. 130 C, 447–459 (2001).Google Scholar
  15. 15.
    A. K. Ray, S. S. Bhattacharjee, and A. K. Medda, “Histochemical Studies on the Effect of Thyroid Hormone on Alkaline and Acid Phosphatase Activities in Liver of Fish and Amphibian,” Endokrinologie 68(1), 80–85 (1976).PubMedGoogle Scholar
  16. 16.
    K. Rousseau, N. Le Belle, M. Sbaihi, et al., “Evidence for a Negative Feedback in the Control of Eel Growth Hormone by Thyroid Hormones,” J. Endocrinol. 175(3), 605–613 (2002).CrossRefPubMedGoogle Scholar
  17. 17.
    K. Sekimizu, M. Tagawa, and H. Takeda, “Defective Fin Regeneration in Medaka Fish (Oryzias latipes) with Hypothyroidism,” Zool. Sci. 24(7), 693–699 (2007).CrossRefPubMedGoogle Scholar
  18. 18.
    M. A. Sheridan, “Effects of Thyroxin, Cortisol, Growth Hormone, and Prolactin on Lipid Metabolism of Coho Salmon, Oncorhynchus kisutch, during Smoltification,” Gen. Comp. Endocrinol. 64(2), 220–238 (1986).CrossRefPubMedGoogle Scholar
  19. 19.
    S. V. Smirnov and B. A. Levin, “Reduction of the Number of Serial Elements at the Acceleration of Ontogenesis in African Barbel Barbus intermedius: A New Type of Pedomorphosis,” Dokl. Akad. Nauk 413(3), 427–429 (2007).Google Scholar
  20. 20.
    S. V. Smirnov, K. F. Dzerzhinskii, and B. A. Levin, “On the Relationship between Scale Number in the Lateral Line in the African Barbel Barbus intermedius and the Rate of Ontogeny (by Experimental Data),” Vopr. Ikhtiol. 46(1), 134–138 (2006) [J. Ichthyol. 46 (1), 129–132 (2006)].Google Scholar
  21. 21.
    G. Tripathi and P. Verma, “Differential Effects of Thyroxine on Metabolic Enzymes and Other Macromolecules in a Freshwater Teleost,” J. Exp. Zool. 296A, 117–124 (2003).CrossRefGoogle Scholar
  22. 22.
    A. M. Ugolev and N. N. Iezuitova, “Determination of Activity of Invertase and Other Disaccharidases,” in Study of the Digestive Apparatus in Humans. Review of Modern Methods (Nauka, Leningrad, 1969), p. 169.Google Scholar
  23. 23.
    A. M. Ugolev and V. V. Kuz’mina, Digestive Processes and Adaptations in Fish (Gidrometeoizdat, St. Petersburg, 1993) [in Russian].Google Scholar
  24. 24.
    A. White, Ph. Handler, E. Smith, et al., Principles of Biochemistry (McGraw-Hill, New York, 1978).Google Scholar
  25. 25.
    Y. Wu and R. J. Koenig, “Gene Regulation by Thyroid Hormone,” Trends Endocrinol. Metabolism 11(6), 207–211 (2000).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • V. V. Kuz’mina
    • 1
  • B. A. Levin
    • 1
    • 2
  • Lyu Vei
    • 3
  • P. V. Rusanova
    • 1
  1. 1.Institute of Biology of Inland WatersRussian Academy of Sciences (IBIW RAS)Borok, Nekouzskiy raion, Yaroslavl oblastRussia
  2. 2.Institute of Ecology and EvolutionRussian Academy of SciencesMoscowRussia
  3. 3.Neilunjiang Research Fisheries InstituteHarbinChina

Personalised recommendations