Skip to main content
Log in

Parameters of energy metabolism in juveniles of Atlantic salmon Salmo salar living in the mainstream and in the tributary of the Varzuga River (the Kola Peninsula)

  • Published:
Journal of Ichthyology Aims and scope Submit manuscript

Abstract

In juveniles of Atlantic salmon Salmo salar of two age groups (0+ and 1+) living in the mainstream and in the tributary of the subarctic Varzuga River, the activity of some enzymes was determined (cytochrome c oxidase, malate dehydrogenase, lactate dehydrogenase, glucose-6-phosphate dehydrogenase, and 1-glycerophosphate dehydrogenase), reflecting the intensity of the direction of principal pathways of carbohydrate metabolism and of synthesis of ATP. The effect of environmental conditions on growth and development of different age groups is different. Underyearlings (0+) living in the tributary are characterized by an advanced locomotor performance and growth rate. They possess a higher level of aerobic and anaerobic energy metabolism and assimilation of carbohydrates for synthesis of structural and stock compounds in comparison with yearlings living in the mainstream. No significant differences are found between two-summer-old fish (1+) from different habitats in parameters of energy metabolism. This demonstrates that the living conditions for them in the tributary are not so favorable as from underyearlings. The food items in the tributary are small and numerous, i.e., are more available for salmon underyearlings. Parrs 1+ feed on large invertebrates and feeding in the mainstream is preferable. The differences in parameters of energy metabolism of juvenile salmon manifesting themselves in the first year of life make the basis for the fact that the subsequent smoltification of parrs and migration for feeding occur at different ages—2+, 3+, or 4+. This contributes to the formation of the complex age structure of the Varzuga stock of salmon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Ahmad and A. U. Hasnain, “Ontogenetic Changes and Developmental Adjustments in Lactate Dehydrogenase Isozymes of an Obligate Air-Breathing Fish Channa punctatus during Deprivation of Air Access,” Comp. Biochem. Physiol. Biochem. Mol. Biol., B 140(2), 271–278 (2005).

    Article  Google Scholar 

  2. G. S. Bailey and S. T. Lim, “Evolution of Duplicated Lactate Dehydrogenase Isozymes in Salmon,” J. Biol. Chem. 252(16), 5708–5715 (1977).

    PubMed  CAS  Google Scholar 

  3. I. A. Baryshev, “Amphibiotic Insects from Sites of Rearing Juvenile Atlantic Salmon in the Varzuga River Basin,” in Materials of II All-Russia Symposium on Amphibiotic and Aquatic Insects (Voronezh. Gos. Univ., Voronezh, 2004), pp. 7–13.

    Google Scholar 

  4. I. A. Baryshev, A. E. Veselov, A. V. Zubchenko, and S. M. Kalyuzhin, “Food Resources of Atlantic Salmon in the Varzuga River Basin,” in Biology, Reproduction, and State of Resources of Anadromous and Freshwater Fish of Kola Peninsula (PINRO, Murmansk, 2005), pp. 21–30.

    Google Scholar 

  5. M. Dixon and E. Webb, Enzymes (Longman, London, 1979).

    Google Scholar 

  6. J. Erkinaro, M. Julkunen, and E. Niemela, “Migration of Juvenile Atlantic Salmon Salmo salar in Small Tributaries of the Subarctic River Teno, Northern Finland,” Aquaculture 168, 105–119 (1998).

    Article  Google Scholar 

  7. G. H. Fried and M. P. Schreibman, “Alterations of Pentose Shunt Activity in Tissues of Teleosts,” Comp. Biochem. Physiol. B 42(4), 517–522 (1972).

    Article  PubMed  CAS  Google Scholar 

  8. A. K. Gamperl, K. J. Rodnick, H. A. Faust, et al., “Metabolism, Swimming Performance, and Tissue Biochemistry of High Desert Redband Trout (Oncorhynchus mykiss ssp.): Evidence for Phenotypic Differences in Physiological Function,” Physiol. Biochem. Zool. 75(5), 413–431 (2002).

    Article  PubMed  CAS  Google Scholar 

  9. E. M. Goolish and I. R. Adelman, “Tissue Specific Cytochrome c Oxidase Activity in Largemouth Bass: The Metabolic Cost of Feeding and Growth,” Physiol. Zool. 60, 454–464 (1987).

    CAS  Google Scholar 

  10. H. Guderley, “Locomotor Performance and Muscle Metabolic Capacities: Impact of Temperature and Energetic Status,” Comp. Biochem. Physiol. Biochem. Mol. Biol, B 139(3), 371–382 (2004).

    Article  Google Scholar 

  11. P. Hochachka and G. Somero, Strategies of Biochemical Adaptation (Saunders, Philadelphia, 1973).

    Google Scholar 

  12. P. W. Hochachka, C. Stanley, J. Merkt, and J. Sumar-Kalinowski, “Metabolic Meaning of Elevated Levels of Oxidative Enzymes in High Altitude Adapted Animals: An Interpretive Hypothesis,” Respirat. Physiol. 52, 303–313 (1983).

    Article  CAS  Google Scholar 

  13. R. V. Kazakov, Biological Bases of Cultivation of Atlantic Salmon (Leg. i Pishch. Prom-st’, Moscow, 1982) [in Russian].

    Google Scholar 

  14. R. V. Kazakov, O. G. Kuz’min, Yu. A. Shustov, and I. L. Shchurov, Atlantic Salmon from the Varzuga River (Gidrometeoizdat, St. Petersburg, 1992) [in Russian].

    Google Scholar 

  15. G. A. Kochetov, Practical Guide on Enzymology (Vysshaya Shkola, Moscow, 1980) [in Russian].

    Google Scholar 

  16. S. T. Lim, R. Kai, and G. S. Bailey, “Lactate Dehydrogenase Isozymes of Salmonid Fish. Evidence for Unique and Rapid Functional Divergence of Duplicated H4 Lactate Dehydrogenase,” J. Biol. Chem. 250(5), 1790–1800 (1975).

    PubMed  CAS  Google Scholar 

  17. L. F. Lysenko and E. G. Berestovskii, Salmon from the Varzuga River. Preprint of a Report (MMBI KarNTs RAN, Murmansk, 1999) [in Russian].

    Google Scholar 

  18. E. Massaro, “The Lactate Dehydrogenase Isozymes of Coregonus hoyigill (Pisces, Salmonidae): Tissue Distribution, Immunochemistry and Molecular Weight,” Comp. Biochem. Physiol., A 46, 353–357 (1973).

    Article  CAS  Google Scholar 

  19. E. J. Massaro and C. L. Market, “Isozyme Patterns of Salmonid Fish: Evidence for Multiple Cistron for Lactate Dehydrogenase Polyeptides,” J. Exp. Zool. 168(2), 223–238 (1968).

    Article  PubMed  CAS  Google Scholar 

  20. R. Maurer, Disk-Elektrophores. Theorie und Praxis der diskontinuierlichen Polyacrylamidgel-Elektrophorese (Springer, Heidelberg, 1968).

    Google Scholar 

  21. N. B. Metcalfe and J. E. Thorpe, “Early Predictors of Life-History Events: The Link Between First Feeding Date, Dominance and Seaward Migration in Atlantic Salmon, Salmo salar,” J. Fish Biol. 41, 93–99 (1992).

    Article  Google Scholar 

  22. C. Nathanailides and N. C. Stickland, “Activity of Cytochrome c Oxidase and Lactate Dehydrogenase in Muscle Tissue of Slow Growing (Lower Modal Group) and Fast Growing (Upper Modal Group) Atlantic Salmon,” J. Fish. Biol. 48, 549–551 (1996).

    CAS  Google Scholar 

  23. N. D. Ozernyuk, Bioenergetics of Ontogenesis (Mosk. Gos. Univ., Moscow, 2000) [in Russian].

    Google Scholar 

  24. D. S. Pavlov, Biological Bases of Fish Behavior Control in a Water Stream (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  25. L. Smith, “Spectrophotometric Assay of Cytochrome c Oxidase,” Methods Biochem. Analysis 24(27) (1955).

  26. Yu. A. Shustov, Ecology of Juvenile Atlantic Salmon (Karelia, Petrozavodsk, 1983) [in Russian].

    Google Scholar 

  27. Yu. A. Shustov, I. L. Shchurov, and A. E. Veselov, “The Effect of Temperature on Physical Capacities of Juvenile Lacustrine Salmon Salmo salar sebago,” Vopr. Ikhtiol. 29(4), 676–677 (1989).

    Google Scholar 

  28. J. R. Treberg, J. M. Lewis, and W. R. Driedzic, “Comparison of Liver Enzymes in Osmerid Fishes: Key Differences Between a Glycerol Accumulating Species, Rainbow Smelt (Osmerus mordax), and a Species That Does Not Accumulate Glycerol, Capelin (Mallotus villosus),” Comp. Biochem. Physiol. Mol. Integr. Physiol. 132(2), 433–438 (2002).

    Article  CAS  Google Scholar 

  29. A. E. Veselov and S. M. Kalyuzhin, Ecology, Behavior, and Distribution of Atlantic Salmon (Karelia, Petrozavodsk, 2001) [in Russian].

    Google Scholar 

  30. A. J. Veselov, R. V. Kazakov, M. I. Sysoeva, and I. N. Bahmet, “Ontogenesis of Rheotactic and Optomotor Responses of Juvenile Atlantic Salmon,” Aquaculture 168, 17–26 (1998).

    Article  Google Scholar 

  31. A. V. Zubchenko, O. G. Kuz’min, O. N. Novikov, and A. L. Sorokin, Recreation Catch of Salmon on Kola Peninsula. Program of Development (PINRO, Murmansk, 1991) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Pavlov.

Additional information

Original Russian Text © D.S. Palov, O.V. Meshcheryakova, A.E. Veselov, N.N. Nemova, A.I. Lupandin, 2007, published in Voprosy Ikhtiologii, 2007, Vol. 47, No. 6, pp. 819–826.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlov, D.S., Meshcheryakova, O.V., Veselov, A.E. et al. Parameters of energy metabolism in juveniles of Atlantic salmon Salmo salar living in the mainstream and in the tributary of the Varzuga River (the Kola Peninsula). J. Ichthyol. 47, 774–781 (2007). https://doi.org/10.1134/S003294520709010X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003294520709010X

Keywords

Navigation