Skip to main content
Log in

Development of ethologo-physiological differentiation between parrs and smolts of the Atlantic salmon Salmo salar

  • Published:
Journal of Ichthyology Aims and scope Submit manuscript

Abstract

Dynamics of the level of monoamines and their metabolites in the brain of juveniles of the Atlantic salmon Salmo salar is investigated in the initial period of differentiation of the progeny into parrs and smolts. The first differences in the level of metabolism of noradrenaline (NA) and 5-HT arise in the optical tectum of the brain before the beginning of smolting. Appearance of the first signs of smolting in juveniles is accompanied by the increase of differences in the level of activity of HA-and 5-HT-ergic systems in the forebrain and hypothalamus. The first differences in the activity of the DAergic system between parrs and smolts were observed in the period of visible differences in fish coloration. In the same period, considerable differences in the level of adrenaline and noradrenaline in the fish blood were recorded. In experiments on a prolonged exposure of fish to a current of different intensity, it was shown that behavior and physiological response of the fish organism are different: in parrs, the stressogenous response is developed, they stop feeding, weight loss takes place, and they cannot withstand the water flow; smolts adapt to the current using heterogeneity of water movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Agustsson, K. Sundell, T. Sakamoto, et al., “Growth Hormone Endocrinology of Atlantic Salmon (Salmo salar): Pituitary Gene Expression, Hormone Storage, Secretion and Plasma Levels during Parr-Smolt Transformation,” J. Endocrinol. 170, 227–234 (2001).

    Article  PubMed  CAS  Google Scholar 

  2. G. Alexander, R. Sweeting, and B. McKeown, “The Shift in Visual Pigment Dominance in the Retinae of Juvenile Coho Salmon (Oncorhynchus kisutch): An Indicator of Smolt Status,” J. Exp. Biol. 195, 185–197 (1994).

    PubMed  Google Scholar 

  3. D. M. Allen, W. N. McFarland, F. W. Munz, and H. A. Poston, “Changes in the Visual Pigments of Trout,” Can. J. Zool. 51, 901–914 (1973).

    PubMed  CAS  Google Scholar 

  4. I. A. Barannikova, Functional Bases of Fish Migration (Nauka, Leningrad, 1975) [in Russian].

    Google Scholar 

  5. B. A. Barton, C. B. Schreck, R. D. Ewing, et al., “Changes in Plasma Cortisol during Stress and Smoltification in Coho Salmon, Oncorhynchus kisutch,” Gen. Comp. Endocrinol. 59(3), 48–471 (1985).

    Article  Google Scholar 

  6. B. Th. Bjornsson, “The Biology of Salmon Growth Hormone: From Daylight to Dominance,” Fish Physiol. Biochem. 17, 9–24 (1997).

    Article  CAS  Google Scholar 

  7. B. Th. Bjornsson, H. Thorarensen, T. Hirano, et al., “Photoperiod and Temperature Affect Plasma Growth Hormone Levels, Growth, Condition Factor and Hypoosmoregulatory Ability of Juvenile Atlantic Salmon (Salmo salar) during Parr-Smolt Transformation,” Aquaculture 82, 77–91 (1989).

    Article  Google Scholar 

  8. J. K. Bowmaker, “Visual Pigments of Fishes,” in The Visual System of Fish, Ed. by R.H. Douglas and M.B.A. Djamgoz (Chapman and Hall, London, 1990), pp. 81–108.

    Google Scholar 

  9. C. D. B. Bridges, “The Rhodopsin-Porphyropsin Visual System,” in Handbook of Sensory Physiology, Vol. VII/I: Photochemistry of Vision, Ed. by H.J.A. Dartnall (Springer, Berlin, 1972), pp. 94–120.

    Google Scholar 

  10. M. Cristy, “Effects of Prolactin and Thyroxine on the Visual Pigments of Trout, Salmo gairdneri,” Gen. Comp. Endocrinol. 23(1), 58–62 (1974).

    Article  PubMed  CAS  Google Scholar 

  11. H. J. A. Dartnall, “Photochemistry of Vision,” in Handbook of Sensory Physiology, Ed. by H.J.A. Dartnall (Springer, Berlin, 1972), Vol. VII/I, pp. 122–145.

    Google Scholar 

  12. L. S. Demski and K. M. Knigge, “The Telencephalon and Hypothalamus of the Bluegill (Lepomis macrochirus): Evoked Feeding, Aggressive and Reproductive Behavior with Representative Frontal Sections,” J. Comp. Neurol. 143, 1–16 (1971).

    Article  PubMed  CAS  Google Scholar 

  13. W. W. Dickhoff, L. Folmar, and A. Gorbman, “Changes in Plasma Thyroxine during Smoltification of Coho Salmon, Oncorhynchus kisutch,” Gen. Comp. Endocrinol. 36, 229–232 (1978).

    Article  PubMed  CAS  Google Scholar 

  14. A. H. Dittman and T. P. Quinn, “Homing in Pacific Salmon: Mechanisms and Ecological Basis,” J. Exp. Biol. 199, 83–91 (1996).

    PubMed  Google Scholar 

  15. B. I. Evans and R. D. Fernald, “Metamorphosis and Fish Vision,” J. Neurobiol. 21, 1037–1052 (1990).

    Article  PubMed  CAS  Google Scholar 

  16. N. V. Evropeitseva and L. M. Nusenbaum, “Experimental Analysis of Passing to Downstream State in Juvenile Lacustrine Salmon,” Dokl. Akad. Nauk SSSR 98(6), 41 (1954).

    Google Scholar 

  17. K. Fage and M. Fontaine, “Migration,” Traite Zool. France 13, 1850–1884 (1958).

    Google Scholar 

  18. M. Fontaine, “The Hormonal Control of Water and Salt-Electrolyte Metabolism,” Mem. Soc. Endocrinol. 5, 69–81 (1955).

    Google Scholar 

  19. M. Fontaine, “Evolution of Form and Function of Endocrine Organs with Special Reference to the Adrenal Gland,” Proc. XVI Int. Congr. Zool. 3, 25–34 (1963).

    Google Scholar 

  20. A. D. Hasler and A. T. Scholz, Olfactory Imprinting and Homing in Salmon (Springer, New York, 1983).

    Google Scholar 

  21. W. S. Hoar, “Control and Timing of Fish Migration,” Biol. Rev. 28, 437–452 (1953).

    CAS  Google Scholar 

  22. W. S. Hoar, “The Endocrine System As a Chemical Link Between the Organism and Its Environment,” Trans. Roy. Soc. Can. 3(4), 175–200 (1965).

    Google Scholar 

  23. W. S. Hoar, “The Physiology of Smolting Salmonids,” in Fish Physiology, Ed. by W.S. Hoar and D. Randall (Academic, Orlando, FL, 1988), Vol. 11B, pp. 275–334.

    Google Scholar 

  24. T. L. Hoffnagle and A. J. Fivizzani, “Stimulations of Plasma Thyroxine Levels by Novel Water Chemistry during Smoltification in Chinook Salmon (Oncorhynchus tshawytscha),” Can. J. Fish. Aquat. Sci. 43, 1513–1517 (1990).

    Google Scholar 

  25. A. H. Houston and L. P. Threadgold, “Body Fluid Regulation in Smolting Atlantic Salmon,” J. Fish. Res. Board Can. 20, 1355–1369 (1963).

    Google Scholar 

  26. I. Jones, S. A. Rogers, P. Kille, and G. E. Sweeney, “Molecular Cloning and Expression of Thyroid Hormone Receptor Alpha during Salmonid Development,” Gen. Comp. Endocrinol. 125, 226–235 (2002).

    Article  PubMed  CAS  Google Scholar 

  27. A. I. Karamyan, Evolution of Telencephalon in Vertebrates (Nauka, Leningrad, 1976) [in Russian].

    Google Scholar 

  28. R. V. Kazakov, Atlantic Salmon (Nauka, St. Petersburg, 1998) [in Russian].

    Google Scholar 

  29. H. Kudo, Y. Tsuneyoshi, M. Nagae, et al., “Detection of Thyroid Hormone Receptors in the Olfactory System and Brain of Wild Masu Salmon, Oncorhynchus masou (Brevoort), during Smolting by in Vitro Autoradiography,” Aquacult. Fish. Manag. 25(2), 171–182 (1994).

    Google Scholar 

  30. D. A. Larsen, B. R. Beckman, and W. W. Dickhoff, “The Effect of Low Temperature and Fasting during the Winter on Metabolic Stores and Endocrine Physiology (Insulin, Insulin-Like Growth Factor-1 and Thyroxyne) of Coho Salmon, Oncorhynchus kisutch,” Gen. Comp. Endocrinol. 123, 308–323 (2001).

    Article  PubMed  CAS  Google Scholar 

  31. J. F. Leatherland, L. Lin, N. E. Down, and E. M. Donaldson, “Thyroid Hormone Content of Eggs and Early Development Stages of Five Oncorhynchus Species,” Can. J. Fish. Aquat. Sci. 46, 2140–2145 (1989).

    Article  CAS  Google Scholar 

  32. S. C. Lema and G. A. Nevitt, “Evidence That Thyroid Hormone Induces Olfactory Cellular Proliferation in Salmon during a Sensitive Period for Imprinting,” J. Exp. Biol. 207, 3317–3327 (2004).

    Article  PubMed  CAS  Google Scholar 

  33. S. C. Lema, M. J. Hodges, M. P. Marchetti, and G. A. Nevitt, “Proliferation Zones in the Salmon Telencephalon and Evidence for Environmental Influence on Proliferation Rate,” J. Comp. Biochem. Physiol., A. Mol. Integr. Physiol. 141(3), 327–335 (2005).

    Article  CAS  Google Scholar 

  34. R. J. Lin, R. J. Rivas, E. G. Grau, et al., “Changes in Plasma Thyroxine Following Transfer of Young Coho Salmon (Oncorhynchus kisutch) from Fresh Water to Fresh Water,” Aquaculture 45, 381–382 (1985).

    Article  Google Scholar 

  35. M. Lipner, “Shining a Light on Lasers: A Look at the New YAG Technology in Cataract Removal,” Eye World 34, 54–55 (1998).

    Google Scholar 

  36. J. A. Lovern, “Fat Metabolism in Fishes. V. The Fat of the Salmon in Its Young Freshwater Stages,” J. Biochem. 28, 1961–1963 (1934).

    CAS  Google Scholar 

  37. O. Magnuson, L. B. Nilsson, and D. Westerlund, “Simultaneous Determination of Dopamine, Dopac and Homovanillic Acid. Direct Injection of Supernatants from Brain Tissue Homogenates in a Liquid Chromatography—Electrochemical Detection System,” J. Chromatogr. 221, 237–247 (1980).

    Article  Google Scholar 

  38. E. M. Malikova, “Biochemical Assessment of Juvenile Salmon at Passing to a State Close to Downstream and of Smolts Staying in Fresh Water,” Tr. Latv. Otd. Vses. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr. 2, 241–255 (1957).

    Google Scholar 

  39. S. D. McCormick, “Hormonal Control of Gill Na+, K+ — ATPase and Chloride Cell Function,” in Fish Physiology, Vol. XIV: Ionoregulation: Cellular and Molecular Approaches, Ed. by C.M. Wood and C.V. Shuttleworth (Academic, New York, 1995), pp. 285–315.

    Google Scholar 

  40. S. D. McCormick, “Effects of Growth Hormone and Insulin-Like Growth Factor 1 on Salinity Tolerance and Gill Na+, K+ — ATPase in Atlantic Salmon, (Salmo salar): Interactions with Cortisol,” Gen. Comp. Endocrinol. 101, 3–11 (1996).

    Article  PubMed  CAS  Google Scholar 

  41. S. D. McCormick and R. L. Saunders, “Preparatory Physiological Adaptation for Marine Life in Salmonids: Osmoregulation, Growth and Metabolism,” Am. Fish. Soc. Symp. 1, 211–229 (1987).

    Google Scholar 

  42. S. D. McCormick, J. M. Shrimpton, S. Moriyama, and B. Thrandur, “Effects of an Advanced Temperature Cycle on Smolt Development and Endocrinology Indicate That Temperature Is Not a Zeitgeber for Smolting in Atlantic Salmon,” J. Exp. Biol. 205, 3553–3560 (2002).

    PubMed  Google Scholar 

  43. W. F. McFarland and D. M. Allen, “The Effect of Extrinsic Factors on Two Distinctive Rhodopsin-Porphyropsin Systems,” Can. J. Zool. 55, 1000–1009 (1977).

    Article  PubMed  CAS  Google Scholar 

  44. M. N. Mel’nikova, “Biology of Atlantic Salmon in the Varzuga River,” Izv. Vses. Nauchno-Issled. Inst. Ozern. Rechn. Rybn. Khoz. 48, 80–94 (1959).

    Google Scholar 

  45. A. R. Mitans, Candidate’s Dissertation in Biology (GosNIORKh, Leningrad, 1973).

    Google Scholar 

  46. C. C. Mylonas, C. V. Sullivan, and J. M. Hinshaw, “Thyroid Hormones in Brown Trout (Salmo trutta) Reproduction and Early Development,” Fish Physiol. Biochem. 13, 485–493 (1994).

    Article  CAS  Google Scholar 

  47. T. M. Nanevicz, M. R. Prince, and A. A. Gawande, “Excimer Laser Ablation of the Lens,” Arch. Ophthalmol. 104, 1825–1829 (1986).

    PubMed  CAS  Google Scholar 

  48. Yu. V. Natochin and G. D. Bocharov, “Activation of Sodium-Excreting Cells in the Gills of Pink Salmon and Chum Salmon Adapting to life in Sea Water,” Vopr. Ikhtiol. 2(25), 687–692 (1962).

    Google Scholar 

  49. I. V. Nechaev, Doctoral Dissertation in Biology (IPEE RAN, Moscow, 2004).

    Google Scholar 

  50. I. V. Nechaev, B. P. Legkii, and Yu. A. Labas, “Relationship between the Differentiation of DOPA and Dopamine Concentrations and the Level of Exploratory Activity in Fry of Aequidens pulcher,” Dokl. Akad. Nauk SSSR 114(5), 1263–1267 (1990).

    Google Scholar 

  51. N. D. Nikiforov, “Development, Growth, and Survival of Embryos and Juveniles of Atlantic Salmon in Nature,” Izv. Vses. Nauchno-Issled. Inst. Ozern. Rechn. Rybn. Khoz. 48, 52–75 (1959).

    Google Scholar 

  52. R. S. Nishioka, G. Young, H. A. Bern, et al., “Attempts To Intensify the Thyroxine Surge in Coho and King Salmon by Chemical Stimulation,” Aquaculture 45, 215–225 (1985).

    Article  CAS  Google Scholar 

  53. G. Parry, “Osmotic and Ionic Changes in Blood and Muscle of Migrating Salmonids,” J. Exp. Biol. 38(2), 411–427 (1961).

    CAS  Google Scholar 

  54. G. Parry, “Osmotic Adaptation in Fishes,” Biol. Rev. 41(3), 392–445 (1966).

    PubMed  CAS  Google Scholar 

  55. R. Patino, C. B. Schreck, and J. M. Redding, “Clearance of Plasma Corticosteroids during Smoltification of Coho Salmon, Oncorhynchus kisutch,” Comp. Biochem. Physiol., A 82, 531–535 (1985).

    Article  CAS  Google Scholar 

  56. H. V. Peeke, S. C. Peeke, and J. S. Williston, “Long-Term Memory Deficits for Habituation of Predatory Behavior in the Forebrain Ablated Goldfish (Carassius auratus),” Exp. Neurol. 36, 288–294 (1972).

    Article  PubMed  CAS  Google Scholar 

  57. W. Riss, M. Halpern, and F. Scalia, “Anatomical Aspects of the Evolution of the Limbic and Olfactory Systems and Their Potential Significance for Behavior,” Ann. N.Y. Acad. Sci. 159, 1096–1111 (1969).

    Article  PubMed  CAS  Google Scholar 

  58. G. E. Savage and M. G. Roberts, “Behavioural Effects of Electrical Stimulation of the Hypothalamus of the Goldfish (Carassius auratus),” Brain. Behav. Evol. 12, 42–56 (1975).

    PubMed  CAS  Google Scholar 

  59. H. O. Schwassman and L. J. Kruger, “Visual Projection to Optic Tectum in Fish,” J. Comp. Neurol. 124, 113–126 (1965).

    Article  PubMed  CAS  Google Scholar 

  60. G. Schwedt, “A Phthalaldehyde Reaction Detector for the HPLC of Amines of Pharmacological Importance,” Anal. Chem. Acta 92, 337–344 (1977).

    Article  CAS  Google Scholar 

  61. M. A. Sheridan, “Effects of Thyroxin, Cortisol, Growth Hormone, and Prolactin on Lipid Metabolism of Coho Salmon, Oncorhynchus kisutch, during Smoltification,” Gen. Comp. Endocrinol. 64(2), 220–238 (1986).

    Article  PubMed  CAS  Google Scholar 

  62. M. A. Sheridan, N. Y. Woo, and H. A. Bern, “Changes in the Rate of Glycogenesis, Glycogenolysis, Lipogenesis, and Lypolysis in Selected Tissues of the Coho Salmon (Oncorhynchus kisutch) Associated with Parr-Smolt Transformation,” J. Exp. Zool. 236(1), 35–44 (1985).

    Article  PubMed  CAS  Google Scholar 

  63. J. M. Shrimpton, B. T. Bjornsson, and S. D. McCormick, “Can Atlantic Salmon Smolt Twice? Endocrine and Biochemical Changes during Smolting,” Can. J. Fish. Aquaat. Sci. 57, 1969–1976 (2000).

    Article  CAS  Google Scholar 

  64. Yu. A. Shustov, Yu. A. Smirnov, and Yu. P. Zelinskii, “On the Growth of Juvenile Salmon Salmo salar L. Morpha sebago Girard in the Tributaries of Onega Lake,” Izv. Nauchno-Islled. Inst. Ozern. Rechn. Rybn. Khoz. 3, 41–48 (1977).

    Google Scholar 

  65. J. L. Specker, J. G. Eales, M. Tagawa, and W. A. Tyler, “Parr-Smolt Transformation in Atlantic Salmon: Thyroid Hormone Deiodination in Liver and Brain and Endocrine Correlates of Change in Rheotactic Behavior,” Can. J. Zool. 78, 696–705 (2000).

    Article  CAS  Google Scholar 

  66. S. O. Stefansson, B. Th. Bjornsson, T. Hansen, et al., “Growth, Parr-Smolt Transformation, and Changes in Growth Hormone of Atlantic Salmon (Salmo salar) Reared under Different Photoperiods,” Can. J. Fish. Aquat. Sci. 48, 2100–2108 (1991).

    Google Scholar 

  67. G. N. Suslova and M. N. Mel’nikova, “Comparative Data on Downstream Migrants of Atlantic Salmon from the Umba and Varzuga Rivers,” Tr. Karel’sk. Otd. Nauchno-Issled. Inst. Ozern. Rechn. Rybn. Khoz. 4(1), 67–82 (1966).

    Google Scholar 

  68. M. Tagawa and T. Hirano, “Presence of Thyroxine in Eggs and Changes in Its Content during Early Development of Chum Salmon, Oncorhynchus keta,” Gen. Comp. Endocrinol. 68, 129–135 (1987).

    Article  PubMed  CAS  Google Scholar 

  69. M. Tagawa and T. Hirano, “Changes in Tissue and Blood Concentrations of Thyroid Hormones in Developing Chum Salmon,” Gen. Comp. Endocrinol. 76, 437–443 (1989).

    Article  PubMed  CAS  Google Scholar 

  70. J. E. Thorpe, C. E. Adams, M. S. Miles, and D. S. Keay, “Some Influence of Photoperiod and Temperature on Opportunity for Growth in Juvenile Atlantic Salmon, Salmo salar L.,” Aquaculture 82(1–4), 119–126 (1989).

    Article  Google Scholar 

  71. K. T. Ueda, J. Hara, and A. Gorbman, “Olfactory Discrimination in Spawning Salmon,” Comp. Biochem. Physiol. 21, 133–143 (1967).

    Article  PubMed  CAS  Google Scholar 

  72. A. E. Veselov, R. V. Kazakov, and M. I. Sysoeva, “Regularities of Catadrome Migration of Smolts of Atlantic Salmon” in Atlantic Salmon, Ed. by R. V. Kazakov (Nauka, St. Petersburg, 1998).

    Google Scholar 

  73. N. I. Yandovskaya, R. V. Kazakov, and Kh. A. Leizerovich, Instruction on Cultivation of Atlantic Salmon (GosNIORKh, Leningrad, 1979) [in Russian].

    Google Scholar 

  74. G. Young, B. Th. Bjornsson, P. Prunet, et al., “Smoltification and Seawater Adaptation in Coho Salmon (Oncorhynchus kisutch): Plasma Prolactin, Growth Hormone, Thyroid Hormones, and Cortisol,” Gen. Comp. Endocrinol. 74(3), 335–345 (1989).

    Article  PubMed  CAS  Google Scholar 

  75. A. F. Youngson and T. H. Simpson, “Changes in Serum Thyroxine Levels during Smolting in Captive and Wild Atlantic Salmon, Salmo salar L., J. Fish Biol. 24, 29–39 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Nechaev.

Additional information

Original Russian Text © I.V. Nechaev, D.S. Pavlov, V.Ya. Nikandrov, 2007, published in Voprosy Ikhtiologii, 2007, Vol. 47, No. 6, pp. 799–818.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nechaev, I.V., Pavlov, D.S. & Nikandrov, V.Y. Development of ethologo-physiological differentiation between parrs and smolts of the Atlantic salmon Salmo salar . J. Ichthyol. 47, 755–773 (2007). https://doi.org/10.1134/S0032945207090093

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032945207090093

Keywords

Navigation