Skip to main content
Log in

Temperature Studies of the LaMn2Si2 Intermetallide by the Raman Spectroscopy and Magnetic Force Microscopy Methods

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Raman spectra of the LaMn2Si2 compound were obtained for the first time by Raman spectroscopy. The change in the Raman spectral characteristics in the temperature range of 263–553 K was investigated. The high sensitivity of the Raman spectroscopy method to a change in the magnetic state caused by a temperature influence has been determined. A change in the spectral characteristics of the vibration mode of manganese atoms near the Curie and Neel temperatures has been revealed. The magnetic force microscopy technique was used to investigate the surface features of the LaMn2Si2 compound at room temperature. A change in the type of magnetic domain structure in LaMn2Si2 after cooling from 298 to 263 K has been found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. E. G. Gerasimov, M. I. Kurkin, A. V. Korolyov, and V. S. Gaviko, “Magnetic anisotropy and ferro-antiferromagnetic phase transition in LaMn2Si2,” Phys. B: Condens. Matter 322, 297–305 (2002). https://doi.org/10.1016/s0921-4526(02)01196-1

    Article  CAS  Google Scholar 

  2. N. V. Mushnikov, E. G. Gerasimov, P. B. Terentev, and V. S. Gaviko, “Magnetic structures and magnetic phase transitions in RMn2Si2,” AIP Adv. 8, 101411 (2018). https://doi.org/10.1063/1.5043061

    Article  CAS  Google Scholar 

  3. T. V. Kuznetsova, Yu. V. Korkh, V. I. Grebennikov, D. I. Radzivonchik, E. A. Ponomareva, E. G. Gerasimov, and N. V. Mushnikov, “Investigation of electronic states and magnetic domain structure of La1 ‒ xSmxMn2Si2 (x = 0, 0.25) layered intermetallic compounds by resonant photoemission spectroscopy and magnetic force microscopy,” Phys. Met. Metallogr. 123, 451–458 (2022). https://doi.org/10.1134/s0031918x22050064

    Article  CAS  Google Scholar 

  4. Raman Spectroscopy for Nanomaterials Characterization, Ed. by Ch. S. S. R. Kumar (Springer, Berlin, 2012). https://doi.org/10.1007/978-3-642-20620-7

  5. I. R. Lewis and H. Edwards, Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line (CRC Press, 2001).

    Book  Google Scholar 

  6. S. Yamanaka, M. Kajiyama, S. N. Sivakumar, and H. Fukuoka, “Strong electron-phonon coupling and enhanced phonon Grüneisen parameters in valence-fluctuating metal EuPd2Si2,”, 481 (2004).

  7. S. L. Cooper, M. V. Klein, Z. Fisk, and J. L. Smith, “Raman scattering study of the electronic and vibrational excitations in CeCu2Si2,” Phys. Rev. B 34, 6235–6239 (1986). https://doi.org/10.1103/physrevb.34.6235

    Article  CAS  Google Scholar 

  8. A. Antal, T. Knoblauch, Y. Singh, P. Gegenwart, D. Wu, and M. Dressel, “Optical properties of the iron-pnictide analog BaMn2As2,” Phys. Rev. B 86, 14506 (2012). https://doi.org/10.1103/physrevb.86.014506

    Article  Google Scholar 

  9. A. Schwarz and R. Wiesendanger, “Magnetic sensitive force microscopy,” Nano Today 3, 28–39 (2008). https://doi.org/10.1016/s1748-0132(08)70013-6

    Article  CAS  Google Scholar 

  10. O. Kazakova, R. Puttock, C. Barton, H. Corte-León, M. Jaafar, V. Neu, and A. Asenjo, “Frontiers of magnetic force microscopy,” J. Appl. Phys. 125, 60901 (2019). https://doi.org/10.1063/1.5050712

    Article  CAS  Google Scholar 

  11. S.-W. Cheong, M. Fiebig, W. Wu, L. Chapon, and V. Kiryukhin, “Seeing is believing: Visualization of antiferromagnetic domains,” npj Quantum Mater. 5, 3 (2020). https://doi.org/10.1038/s41535-019-0204-x

  12. E. G. Gerasimov, V. S. Gaviko, V. N. Neverov, and A. V. Korolyov, “Magnetic phase transitions and giant magnetoresistance in La1 − xSmxMn2Si2 (0 ≤ x ≤ 1),” J. Alloys Compd. 343, 14–25 (2002). https://doi.org/10.1016/s0925-8388(02)00110-x

    Article  CAS  Google Scholar 

  13. M. N. Iliev, M. V. Abrashev, J. Laverdière, S. Jandl, M. M. Gospodinov, Y.-Q. Wang, and Y.-Y. Sun, “Distortion-dependent Raman spectra and mode mixing in RMnO3 perovskites (R = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y),” Phys. Rev. B 73, 64302 (2006). https://doi.org/10.1103/physrevb.73.064302

    Article  Google Scholar 

  14. S. Bernardini, F. Bellatreccia, A. Casanova Municchia, G. Della Ventura, and A. Sodo, “Raman spectra of natural manganese oxides,” J. Raman Spectrosc. 50, 873–888 (2019). https://doi.org/10.1002/jrs.5583

    Article  CAS  Google Scholar 

  15. P. Borowicz, M. Latek, W. Rzodkiewicz, A. Łaszcz, A. Czerwinski, and J. Ratajczak, “Deep-ultraviolet Raman investigation of silicon oxide: Thin film on silicon substrate versus bulk material,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 3, 045003 (2012). https://doi.org/10.1088/2043-6262/4/045003

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 23-72-00067, https://rscf.ru/project/23-72-00067/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Korkh.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by A. Seferov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korkh, Y.V., Ponomareva, E.A., Druzhinin, A.V. et al. Temperature Studies of the LaMn2Si2 Intermetallide by the Raman Spectroscopy and Magnetic Force Microscopy Methods. Phys. Metals Metallogr. 125, 261–266 (2024). https://doi.org/10.1134/S0031918X23603086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X23603086

Keywords:

Navigation