Skip to main content
Log in

Stress-Dependent Magnetization Processes in Cobalt-Based Amorphous Microwires

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Soft magnetic materials with high magnetic susceptibility in response to the influence of alternating magnetic fields, generate an inductive electric voltage in the receiving coil, the spectrum of which contains higher harmonics. This is due to the nonlinear dependence of magnetization on the magnetic field, and the amplitudes of higher harmonics make a significant contribution to the overall signal if an external field leads to magnetic saturation. Magnetic susceptibility and saturation field are largely determined by magnetoelastic interactions in amorphous ferromagnets, respectively, the amplitudes of higher harmonics should depend on external mechanical stresses. In this work, we study the processes of magnetization reversal in amorphous microwires of two compositions: Co71Fe5B11Si10Cr3 and Co66.6Fe4.28B11.51Si14.48Ni1.44Mo1.69 under the action of external tensile stresses. For the first composition, mechanical stresses exceeding a certain limit (higher than 350 MPa) lead to the transformation of the magnetic hysteresis from a bistable type to an inclined one. In this case, a sharp change of the harmonic spectrum is observed. In microwires of the second composition with an initially inclined loop, external stresses cause a monotonous increase in the slope of the hysteresis loop (a decrease in susceptibility). In this case, the amplitudes of higher harmonics change significantly at low stresses, lower than 100 MPa. The results were obtained by magnetization reversal of microwire samples using a system of flat coils, which demonstrates the potential of using these materials as wireless sensors of mechanical stresses with remote reading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. K. G. Ong, M. Paulose, and C. A. Grimes, “A wireless, passive, magnetically-soft harmonic sensor for monitoring sodium hypochlorite concentrations in water,” Sensors 3, 11–14 (2003). https://doi.org/10.3390/s30100011

    Article  CAS  PubMed Central  Google Scholar 

  2. S. Baglio, A. R. Bulsara, B. Ando, S. La Malfa, V. Marletta, C. Trigona, P. Longhini, A. Kho, V. In, J. D. Neff, G. W. Anderson, C. C. Obra, B. K. Meadows, and A. Palacios, “Exploiting nonlinear dynamics in novel measurement strategies and devices: From theory to experiments and applications,” IEEE Trans. Instrum. Meas. 60, 667–695 (2011). https://doi.org/10.1109/tim.2010.2089576

    Article  Google Scholar 

  3. D. Praslicka, J. Blazek, M. Smelko, J. Hudak, A. Cverha, I. Mikita, R. Varga, and A. Zhukov, “Possibilities of measuring stress and health monitoring in materials using contact-less sensor based on magnetic microwires,” IEEE Trans. Magn. 49, 128–131 (2013). https://doi.org/10.1109/tmag.2012.2219854

    Article  Google Scholar 

  4. M. Churyukanova, S. Kaloshkin, E. Shuvaeva, A. Stepashkin, M. Zhdanova, A. Aronin, O. Aksenov, P. Ara-kelov, V. Zhukova, and A. Zhukov, “Non-contact method for stress monitoring based on stress dependence of magnetic properties of Fe-based microwires,” J. Alloys Compd. 748, 199–205 (2018). https://doi.org/10.1016/j.jallcom.2018.02.342

    Article  CAS  Google Scholar 

  5. A. Zhukov, P. Corte-Leon, L. Gonzalez-Legarreta, M. Ipatov, J. M. Blanco, A. Gonzalez, and V. Zhukova, “Advanced functional magnetic microwires for technological applications,” J. Phys. D: Appl. Phys. 55, 253003 (2022). https://doi.org/10.1088/1361-6463/ac4fd7

    Article  CAS  Google Scholar 

  6. D. Kozejova and R. Varga, “Bistable magnetic microwire for contactless sensor of intracranial pressure,” J. Magn. Magn. Mater. 569, 170473 (2023). https://doi.org/10.1016/j.jmmm.2023.170473

    Article  CAS  Google Scholar 

  7. R. Hudák, R. Varga, J. Živčák, J. Hudák, J. Blažek, and D. Praslička, “Application of magnetic microwires in titanium implants–Conception of intelligent sensoric implant,” in Aspects of Computational Intelligence: Theory and Applications, Ed. by L. Madarász and J. Živčák, Topics in Intelligent Engineering and Informatics, Vol. 2 (Springer, Berlin, 2013), pp. 413–434. https://doi.org/10.1007/978-3-642-30668-6_26

  8. R. Hudak, I. Polacek, P. Klein, R. Sabol, R. Varga, J. Zivcak, and M. Vazquez, “Nanocrystalline magnetic glass-coated microwires using the effect of superparamagnetism are usable as temperature sensors in biomedical applications,” IEEE Trans. Magn. 53, 5300305 (2017). https://doi.org/10.1109/tmag.2016.2628181

    Article  CAS  Google Scholar 

  9. R. Sabol, R. Varga, J. Hudak, J. Blazek, D. Praslicka, P. Vojtanik, G. Badini, and M. Vazquez, “Stress dependence of the switching field in glass-coated microwires with positive magnetostriction,” J. Magn. Magn. Mater. 325, 141–143 (2013). https://doi.org/10.1016/j.jmmm.2012.08.030

    Article  CAS  Google Scholar 

  10. R. Sabol, M. Rovnak, P. Klein, M. Vazquez, and R. Varga, “Mechanical stress dependence of the switching field in amorphous microwires,” IEEE Trans. Magn. 51, 2000304 (2015). https://doi.org/10.1109/tmag.2014.2357580

    Article  Google Scholar 

  11. M. Vazquez, C. Gomez-Polo, and D. X. Chen, “Switching mechanism and domain structure of bistable amorphous wires,” IEEE Trans. Magn. 28, 3147–3149 (1992). https://doi.org/10.1109/20.179740

    Article  CAS  Google Scholar 

  12. P. Aragoneses, J. M. Blanco, L. Dominguez, J. González, A. Zhukov, and M. Vázquez, “The stress dependence of the switching field in glass-coated amorphous microwires,” J. Phys. D: Appl. Phys. 31, 3040–3045 (1998). https://doi.org/10.1088/0022-3727/31/21/009

    Article  CAS  Google Scholar 

  13. B. Gleich and J. Weizenecker, “Tomographic imaging using the nonlinear response of magnetic particles,” Nature 435, 1214–1217 (2005). https://doi.org/10.1038/nature03808

    Article  CAS  PubMed  Google Scholar 

  14. L. C. Wu, Y. Zhang, G. Steinberg, H. Qu, S. Huang, M. Cheng, T. Bliss, F. Du, J. Rao, G. Song, L. Pisani, T. Doyle, S. Conolly, K. Krishnan, G. Grant, and M. A. Wintermark, “A review of magnetic particle imaging and perspectives on neuroimaging,” Am. J. Neuroradiology 40, 206–212 (2019). https://doi.org/10.3174/ajnr.a5896

    Article  CAS  Google Scholar 

  15. H. Chiriac and T. A. Óvári, “Amorphous glass-covered magnetic wires: Preparation, properties, applications,” Prog. Mater. Sci. 40, 333–407 (1996). https://doi.org/10.1016/s0079-6425(97)00001-7

    Article  CAS  Google Scholar 

  16. A. Zhukov, K. Chichay, A. Talaat, V. Rodionova, J. M. Blanco, M. Ipatov, and V. Zhukova, “Manipulation of magnetic properties of glass-coated microwires by annealing,” J. Magn. Magn. Mater. 383, 232–236 (2015). https://doi.org/10.1016/j.jmmm.2014.10.003

    Article  CAS  Google Scholar 

  17. A. Zhukov, M. Churyukanova, S. Kaloshkin, V. Sudarchikova, S. Gudoshnikov, M. Ipatov, A. Talaat, J. M. Blanco, and V. Zhukova, “Magnetostriction of Co–Fe-based amorphous soft magnetic microwires,” J. Electron. Mater. 45, 226–234 (2016). https://doi.org/10.1007/s11664-015-4011-2

    Article  CAS  Google Scholar 

  18. M. G. Nematov, I. Baraban, N. A. Yudanov, V. Rodionova, F. X. Qin, H. Peng, and L. V. Panina, “Evolution of the magnetic anisotropy and magnetostriction in Co-based amorphous alloys microwires due to current annealing and stress-sensory applications,” J. Alloys Compd. 837, 155584 (2020). https://doi.org/10.1016/j.jallcom.2020.155584

    Article  CAS  Google Scholar 

  19. J. Hudak, J. Blazek, A. Cverha, P. Gonda, and R. Varga, “Improved Sixtus–Tonks method for sensing the domain wall propagation direction,” Sens. Actuators A: Phys. 156, 292–295 (2009). https://doi.org/10.1016/j.sna.2009.09.005

    Article  CAS  Google Scholar 

  20. A. S. Antonov, V. T. Borisov, O. V. Borisov, A. F. Prokoshin, and N. A. Usov, “Residual quenching stresses in glass-coated amorphous ferromagnetic microwires,” J. Phys. D: Appl. Phys. 33, 1161–1168 (2000). https://doi.org/10.1088/0022-3727/33/10/305

    Article  CAS  Google Scholar 

  21. J. M. Barandiarán, A. Hernando, V. Madurga, O. V. Nielsen, M. Vázquez, and M. Vázquez-López, “Temperature, stress, and structural-relaxation dependence of the magnetostriction in (Co\0.94/BFe0.06)75/BSi15 B10 glasses,” Phys. Rev. B 35, 5066 (1987). https://doi.org/10.1103/PhysRevB.35.5066

    Article  Google Scholar 

  22. V. Zhukova, J. M. Blanco, V. Rodionova, M. Ipatov, and A. Zhukov, “Domain wall propagation in micrometric wires: Limits of single domain wall regime,” J. Appl. Phys. 111, 07E311 (2012). https://doi.org/10.1063/1.3672076

  23. L. V. Panina, M. Ipatov, V. Zhukova, and A. Zhukov, “Domain wall propagation in Fe-rich amorphous microwires,” Phys. B: Condens. Matter 407, 1442–1445 (2012). https://doi.org/10.1016/j.physb.2011.06.047

    Article  CAS  Google Scholar 

  24. A. Hubert and R. Schäfer, Magnetic Domains: The Analysis of Magnetic Microstructures (Springer, Berlin, 1998). https://doi.org/10.1007/978-3-540-85054-0

    Book  Google Scholar 

Download references

Funding

This study was supported by the NUST MISIS within the framework of the “Priority 2030” (project K6-2022-043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Evstigneeva.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evstigneeva, S.A., Lutsenko, O., Ganzhina, T.Y. et al. Stress-Dependent Magnetization Processes in Cobalt-Based Amorphous Microwires. Phys. Metals Metallogr. 125, 111–117 (2024). https://doi.org/10.1134/S0031918X23602937

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X23602937

Keywords:

Navigation