Skip to main content
Log in

Micromagnetic Simulation of Irregular Magnetization Reversal Dynamics in a Nanosized Permalloy Film with a Stepped Relief of the Boundary Surface

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The paper presents three-dimensional micromagnetic simulation of the magnetization reversal process of permalloy film with additional relief elements of step-like shape made of the same material. It is shown that in the course of magnetization reversal in a constant magnetic field, the initial magnetization distribution containing a C-shaped domain wall is transformed into a magnetization reversal zone filled with vortex structures. In this case, the magnetization reversal dynamics becomes irregular. The peculiarities of the dynamics of the magnetization reversal zone (change in magnetization reversal rate, temporary or final cessation of motion) are revealed for different types of surface relief elements (strips, linear or two-dimensional arrays of rectangular parallelepipeds of different sizes). Visualization methods of vortex structures are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. S. S. P. Parkin, M. Hayashi, and L. Thomas, “Magnetic domain-wall racetrack memory,” Science 320, 190–194 (2008). https://doi.org/10.1126/science.1145799

    Article  CAS  PubMed  Google Scholar 

  2. D. A. Allwood, G. Xiong, M. D. Cooke, C. C. Faulkner, D. Atkinson, N. Vernier, and R. P. Cowburn, “Submicrometer ferromagnetic NOT gate and shift register,” Science 296, 2003–2006 (2002). https://doi.org/10.1126/science.1070595

    Article  CAS  PubMed  Google Scholar 

  3. R. Hertel and C. M. Schneider, “Exchange explosions: Magnetization dynamics during vortex–antivortex annihilation,” Phys. Rev. Lett. 97, 177202 (2006). https://doi.org/10.1103/physrevlett.97.177202

    Article  PubMed  Google Scholar 

  4. J.-Yo. Lee, K.-S. Lee, S. Choi, K. Y. Guslienko, and S.-K. Kim, “Dynamic transformations of the internal structure of a moving domain wall in magnetic nanostripes,” Phys. Rev. B 76, 184408 (2007). https://doi.org/10.1103/physrevb.76.184408

    Article  Google Scholar 

  5. V. Estévez and L. Laurson, “Magnetic domain-wall dynamics in wide permalloy strips,” Phys. Rev. B 93, 064403 (2016). https://doi.org/10.1103/physrevb.93.064403

    Article  Google Scholar 

  6. V. Estévez and L. Laurson, “Fast vortex wall motion in wide permalloy strips from double switching of the vortex core,” Phys. Rev. B 96, 064420 (2017). https://doi.org/10.1103/physrevb.96.064420

    Article  CAS  Google Scholar 

  7. V. V. Zverev, E. Zh. Baikenov, and I. M. Izmozherov, “Dynamic rearrangements of a three-dimensional topological structure of a moving domain wall in magnetic film in the presence of random perturbations,” Phys. Solid State 61, 2041–2054 (2019). https://doi.org/10.1134/s106378341911043x

    Article  CAS  Google Scholar 

  8. C. Donnelly and V. Scagnoli, “Imaging three-dimensional magnetic systems with X-rays,” J. Phys.: Condens. Matter 32, 213001 (2020). https://doi.org/10.1088/1361-648x/ab5e3c

    Article  CAS  PubMed  Google Scholar 

  9. J. Leliaert, M. Dvornik, J. Mulkers, J. De Clercq, M. V. Milošević, and B. Van Waeyenberge, “Fast micromagnetic simulations on GPU—Recent advances made with mumax3,” J. Phys. D: Appl. Phys. 51, 123002 (2018). https://doi.org/10.1088/1361-6463/aaab1c

    Article  CAS  Google Scholar 

  10. J. Leliaert and J. Mulkers, “Tomorrow’s micromagnetic simulations,” J. Appl. Phys. 125, 180901 (2019). https://doi.org/10.1063/1.5093730

    Article  CAS  Google Scholar 

  11. M. Noske, H. Stoll, M. Fähnle, A. Gangwar, G. Woltersdorf, A. Slavin, M. Weigand, G. Dieterle, J. Förster, C. H. Back, and G. Schütz, “Spin wave mediated unidirectional vortex core reversal by two orthogonal monopolar field pulses: The essential role of three-dimensional magnetization dynamics,” J. Appl. Phys. 119, 173901 (2017). https://doi.org/10.1063/1.4948354

    Article  CAS  Google Scholar 

  12. T. Herranen and L. Laurson, “Bloch-line dynamics within moving domain walls in 3D ferromagnets,” Phys. Rev. B 96, 144422 (2017). https://doi.org/10.1103/physrevb.96.144422

    Article  CAS  Google Scholar 

  13. A. Fernández-Pacheco, R. Streubel, O. Fruchart, R. Hertel, P. Fischer, and R. P. Cowburn, “Three-dimensional nanomagnetism,” Nat. Commun. 8, 15756 (2017). https://doi.org/10.1038/ncomms15756

    Article  PubMed  PubMed Central  Google Scholar 

  14. P. Fischer, D. Sanz-Hernández, R. Streubel, and A. Fernández-Pacheco, “Launching a new dimension with 3D magnetic nanostructures,” APL Mater. 8, 010701 (2020). https://doi.org/10.1063/1.5134474

    Article  CAS  Google Scholar 

  15. A. I. Morozov and A. S. Sigov, Frustrated Magnetic Nanostructures (Fizmatlit, Moscow, 2016).

    Google Scholar 

  16. T. Schneider, M. Langer, J. Alekhina, E. Kowalska, A. Oelschlägel, A. Semisalova, A. Neudert, K. Lenz, K. Potzger, M. P. Kostylev, J. Fassbender, A. O. Adeyeye, J. Lindner, and R. Bali, “Programmability of Co-antidot lattices of optimized geometry,” Sci. Rep. 7, 41157 (2017). https://doi.org/10.1038/srep41157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. N. Tahir, M. Zelent, R. Gieniusz, M. Krawczyk, A. Maziewski, T. Wojciechowski, J. Ding, and A. O. Adeyeye, “Magnetization reversal mechanism in patterned (square to wave-like) Py antidot lattices,” J. Phys. D: Appl. Phys. 50, 025004 (2017). https://doi.org/10.1088/1361-6463/50/2/025004

    Article  CAS  Google Scholar 

  18. V. V. Zverev and I. M. Izmozherov, “Dynamical rearrangements of 3-D vortex structures in moving domain walls in continuous and antidot patterned permalloy films,” IEEE Trans. Magn. 58, 4300805 (2022). https://doi.org/10.1109/tmag.2021.3083704

    Article  Google Scholar 

  19. V. V. Zverev, “Pinning of vortices during the passage of turbulent magnetization reversal waves in antidot films with through and non-through holes,” Bull. Russ. Acad. Sci.: Phys. 87, 379–384 (2023). https://doi.org/10.3103/S1062873822701271

    Article  CAS  Google Scholar 

  20. A. P. Malozemoff and J. C. Slonczewski, Magnetic Domain Walls in Bubble Materials, Ed. by R. Wolfe, Advances in Materials and Device Research (Academic, New York, 1979). https://doi.org/10.1016/C2013-0-06998-8

    Book  Google Scholar 

  21. A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, and B. Van Waeyenberge, “The design and verification of MuMax3,” AIP Adv. 4, 107133 (2014). https://doi.org/10.1063/1.4899186

    Article  CAS  Google Scholar 

  22. B. Van De Wiele, A. Manzin, A. Vansteenkiste, O. Bottauscio, L. Dupré, and D. De Zutter, “A micromagnetic study of the reversal mechanism in permalloy antidot arrays,” J. Appl. Phys. 111, 053915 (2012). https://doi.org/10.1063/1.3689846

    Article  CAS  Google Scholar 

  23. R. Streubel, F. Kronast, U. K. Rößler, O. G. Schmidt, and D. Makarov, “Reconfigurable large-area magnetic vortex circulation patterns,” Phys. Rev. B 92, 104431 (2015). https://doi.org/10.1103/physrevb.92.104431

    Article  Google Scholar 

  24. K. M. Lebecki, M. J. Donahue, and M. W. Gutowski, “Periodic boundary conditions for demagnetization interactions in micromagnetic simulations,” J. Phys. D: Appl. Phys. 41, 175005 (2008). https://doi.org/10.1088/0022-3727/41/17/175005

    Article  CAS  Google Scholar 

  25. A. E. La Bonte, “Two-dimensional Bloch-type domain walls in ferromagnetic films,” J. Appl. Phys. 40, 2450–2458 (1969). https://doi.org/10.1063/1.1658014

    Article  CAS  Google Scholar 

  26. P. Sutcliffe, “Vortex rings in ferromagnets: Numerical simulations of the time-dependent three-dimensional Landau–Lifshitz equation,” Phys. Rev. B 76, 184439 (2007). https://doi.org/10.1103/physrevb.76.184439

    Article  Google Scholar 

  27. V. V. Zverev, I. M. Izmozherov, and B. N. Filippov, “Visualization of dynamic vortex structures in magnetic films with uniaxial anisotropy (micromagnetic simulation),” Phys. Solid State 60, 299–311 (2018). https://doi.org/10.1134/s1063783418020324

    Article  CAS  Google Scholar 

  28. Yu. A. Borisov and S. S. Kiselev, Two-Dimensional and Three-Dimensional Topological Defects, Solitons, and Textures in Magnetics (Fizmatlit, Moscow, 2022).

    Google Scholar 

  29. Videos. https://youtu.be/-dQY-0neQGc, https://youtu.be/cfLeoMy5d6Y, https://youtu.be/VdwcB3DaU4o, https://youtu.be/aXpuKZVv-GI.

Download references

Funding

The research was financially supported by the Ministry of Science and Technology of the Russian Federation under the state assignment of the Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences (Topic “Magnet” no. 122021000034-9) and the Priority-2030 Program of Strategic Academic Leadership of the Ural Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Zverev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zverev, V.V. Micromagnetic Simulation of Irregular Magnetization Reversal Dynamics in a Nanosized Permalloy Film with a Stepped Relief of the Boundary Surface. Phys. Metals Metallogr. 125, 41–48 (2024). https://doi.org/10.1134/S0031918X23602391

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X23602391

Keywords:

Navigation