Skip to main content
Log in

Thermophysical Properties of Metals in Quasi-Two-Phase Model

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The paper demonstrates the applicability of the model of a two-phase locally equilibrium region for calculating temperature dependences of heat capacity, linear thermal expansion coefficient, and thermal diffusivity of various metals. It is shown that the proposed correlations allow describing the enhancement of thermal characteristics with increasing temperature and associated changes during phase transition. The established correlations can be extrapolated to experimentally unexplored domains. The relative simplicity of the model in establishing relations, universality in when describing various types of solids, and clear theoretical results make this model suitable for use in engineering and technical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. E. A. Pamyatnykh, “Electron quantum waves in metal nanowires,” Phys. Met. Metallogr. 121, 405–407 (2020). https://doi.org/10.1134/S0031918X20050099

    Article  CAS  ADS  Google Scholar 

  2. I. N. Ganiev, M. T. Norova, B. B. Eshov, N. F. Ibrokhimov, and S. Zh. Ibrokhimov, “Effect of scandium additions on the temperature dependences of the heat capacity and thermodynamic functions of aluminum–manganese alloys,” Phys. Met. Metallogr. 121, 21–27 (2020). https://doi.org/10.1134/s0031918x20010068

    Article  CAS  ADS  Google Scholar 

  3. V. E. Porsev, A. L. Ul’yanov, and G. A. Dorofeev, “Short-range order evolution in nanocrystalline mechanically activated Fe–Cr alloys in the process of annealing,” Phys. Met. Metallogr. 121, 783–790 (2020). https://doi.org/10.1134/s0031918x20080086

    Article  CAS  ADS  Google Scholar 

  4. R. E. Voskoboinikov, “Simulation of primary radiation damage in nickel,” Phys. Met. Metallogr. 121, 14–20 (2020). https://doi.org/10.1134/S0031918X20010196

    Article  CAS  ADS  Google Scholar 

  5. L. A. Novitskii and I. G. Kozhevnikov, Thermophysical Properties of Materials at Low Temperatures: Reference Book (Mashinostroenie, Moscow, 1975) [in Russian].

    Google Scholar 

  6. V. E. Zinov’ev, Thermophysical Properties of Metals at High Temperatures (Metallurgiya, Moscow, 1989) [in Russian].

    Google Scholar 

  7. L. N. Larikov and Yu. F. Yurchenko, Structure and Properties of Metals and Alloys (Naukova Dumka, Kiev, 1985) [in Russian].

    Google Scholar 

  8. W. F. Giauque and P. F. Meads, “The heat capacities and entropies of aluminum and copper from 15 to 300 K,” J. Am. Chem. Soc. 63, 1897–1901 (1941). https://doi.org/10.1021/ja01852a027

    Article  CAS  Google Scholar 

  9. P. I. Dorogokupets, T. S. Sokolova, B. S. Danilov, and K. D. Litasov, “Near-absolute equations of state of diamond, Ag, Al, Au, Cu, Mo, Nb, Pt, Ta, and W for quasi-hydrostatic conditions,” Geodyn. Tectonophysics 3, 129–166 (2012). https://doi.org/10.5800/gt-2012-3-2-0067

    Book  Google Scholar 

  10. S. I. Novikova, Thermal Expansion of Solids (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  11. E. I. Kazantsev, Industrial Furnaces: Reference Book for Calculations and Design (Metallurgiya, Moscow, 1975) [in Russian].

    Google Scholar 

  12. V. Yu. Bodryakov, “Correlation of temperature dependences of thermal expansion and heat capacity of refractory metal up to the melting point: Tungsten,” High temperature 53, 643–648 (2015). https://doi.org/10.1134/S0018151X15040069

    Article  CAS  Google Scholar 

  13. Properties of Elements: Reference Book, Ed. by M. E. Drits (Metallurgiya, Moscow, 1985) [in Russian].

    Google Scholar 

  14. E. S. R. Gopal, Specific Heats at Low Temperatures, The International Cryogenics Monograph Series (Springer, New York, 1966). https://doi.org/10.1007/978-1-4684-9081-7

    Book  Google Scholar 

  15. R. S. Bubnova and S. K. Filatov, Thermo-X-Ray Analysis of Polycrystalline Materials, Part 2: Determination of Quantitative Characteristics of the Thermal Expansion Tensor (S.-Peterb. Gos. Univ., St. Petersburg, 2013) [in Russian].

    Google Scholar 

  16. P. D. Desai, “Thermodynamic properties of iron and silicon,” J. Phys. Chem. Ref. Data 15, 967–983 (1986). https://doi.org/10.1063/1.555761

    Article  CAS  ADS  Google Scholar 

  17. S. Stølen and T. Grande, Chemical Thermodynamics of Materials: Macroscopic and Microscopic Aspects (Wiley, Chichester, West Sussex, 2004). https://doi.org/10.1002/0470092688

    Book  Google Scholar 

  18. T. H. K. Barron and G. K. White, Heat Capacity and Thermal Expansion at Low Temperatures, International Cryogenics Monograph Series (Springer, New York, 1999). https://doi.org/10.1007/978-1-4615-4695-5

    Book  Google Scholar 

  19. Z. Li, H. Mao, and M. Selleby, “Thermodynamic modeling of pure Co accounting two magnetic states for the Fcc phase,” J. Phase Equilib. Diffus. 39, 502–509 (2018). https://doi.org/10.1007/s11669-018-0656-x

    Article  CAS  Google Scholar 

  20. I. L. Khodakovskii, “One new semiempirical equations of temperature dependence of the volumetric thermal expansion coefficient of minerals,” Vestn. ONZ Ross. Akad. Nauk 4, NZ9001 (2012). https://doi.org/10.2205/2012NZ_ASEMPG

    Article  Google Scholar 

  21. L. T. Denisova, Yu. F. Kargin, L. A. Irtyugo, N. V. Belousova, V. V. Beletskii, and V. M. Denisov, “Heat capacity of In2Ge2O7 and YInGe2O7 from 320 to 1000 K,” Inorg. Mater. 54, 1245–1249 (2018). https://doi.org/10.1134/s0020168518120026

    Article  CAS  Google Scholar 

  22. S. V. Terekhov, “Thermodynamic model of a blurred phase transition in the Fe40Ni40P14B6,” Fiz. Tekh. Vys. Davlenii 28 (1), 54–61 (2018).

    CAS  Google Scholar 

  23. S. V. Terekhov, “Single- and multistage crystallization of amorphous alloys,” Phys. Met. Metallogr. 121, 664–669 (2020). https://doi.org/10.1134/S0031918X20070108

    Article  CAS  ADS  Google Scholar 

  24. S. V. Terehov, “Thermal properties of matter within the model of a two-phase system,” Phys. Solid State, No. 8, 1089 (2022). https://doi.org/10.21883/PSS.2022.08.54631.352

  25. S. V. Terekhov, “Diffuse phase transition and heat capacity of a solid,” Fiz. Tekh. Vys. Davlenii 32 (2), 36–51 (2022).

    CAS  Google Scholar 

  26. R. Kubo, Thermodynamics: An Advanced Course with Problems and Solutions (North-Holland, Amsterdam, 1968).

    Google Scholar 

  27. U. D. Kingeri, Introduction to Ceramics (Stroiizdat, Moscow, 1967) [in Russian].

    Google Scholar 

  28. A. G. Chertov, Units of Measure of Physical Quantities (Vysshaya Shkola, Moscow, 1977) [in Russian].

    Google Scholar 

  29. Yu. E. Sheludyak, L. Ya. Kashporov, L. A. Malinin, and V. N. Tsalkov, Thermophysical Properties of Fuel Systems: Reference Book, Ed. by N. A. Silin (Informatsiya i Tekhniko-Ekonomicheskie Issled., Moscow, 1992) [in Russian].

    Google Scholar 

  30. A. P. Babichev, N. A. Babushkina, A. M. Bratkovskii, et al., Physical Quantities: Reference Book, Ed. by I. S. Grigor’ev and E. Z. Melikhov (Energoatomizdat, Moscow, 1991) [in Russian].

    Google Scholar 

  31. S. V. Terekhov, “Effect of phase transitions on the temperature dependences of the thermal properties of a substance,” Fiz. Tekh. Vys. Davlenii 32 (4), 41–50 (2022).

    CAS  Google Scholar 

  32. S. V. Terekhov, Heat Capacity and Thermal Expansion of Matter: Reference Book (Donetskii Fiz.-Tekh. Inst. im. A.A. Galkina, Donetsk, 2022) [in Russian].

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Terekhov.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terekhov, S.V. Thermophysical Properties of Metals in Quasi-Two-Phase Model. Phys. Metals Metallogr. 124, 1293–1302 (2023). https://doi.org/10.1134/S0031918X23602196

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X23602196

Keywords:

Navigation