Skip to main content
Log in

Effect of Phonon Focusing and Shear Waves on Drag Thermopower in Potassium Single-Crystal Nanostructures at Low Temperatures. Review 3

  • THEORY OF METALS
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The effect of phonon focusing on electron–phonon drag and thermopower in nanostructures based on potassium single crystals at low temperatures is studied. The role of quasi-longitudinal and quasi-transverse phonons, as well as shear waves, in the drag thermopower of the nanostructures is considered. It is shown that, in the Knudsen flow regime of a phonon gas, the slow quasi-transverse t2 mode makes the dominant contribution to the drag thermopower of the nanostructures and, only in directions close to the focusing of longitudinal phonons (L-phonons), their contribution become comparable to the contribution of the t2 mode. The directions of heat flux in which the maximum and minimum values of drag thermopower are achieved in nanowires, films, and nanoplates based on potassium single crystals are determined. The study of the effect of focusing on the phonon propagation in potassium single crystals made it possible to calculate a number of new, unusual effects in the anisotropy of drag thermopower in potassium-based nanostructures. These effects are mainly due to the competition between the contributions of the t2 mode and L-phonons to the drag thermopower. Since the relaxation rate of L-phonons on electrons in potassium is 25 times higher than for the t2 mode, with an increase in the transverse dimensions of potassium nanostructures, the anisotropy of the drag thermopower in them, in contrast to the anisotropy of thermal conductivity in dielectric nanostructures, changes nonmonotonically. It first increases, reaching a maximum, then decreases, and vanishes when the dimensions become macroscopic (D ≥ 10–1 cm). One of the interesting effects calculated in this work is the orientational anisotropy of drag thermopower in potassium nanoplates. In two identical nanoplates with a rectangular cross section, the thermopower in the direction of the temperature gradient [011] for the orientation of the wide faces of the {100} plates turns out to be significantly greater than for the {110} orientation. With increasing plate width, the orientational anisotropy of thermopower increases to 37%. It is shown that the orientational anisotropy of the thermopower is due to the effect of focusing on the phonon propagation in the plates. The competition between the contributions of the t2 mode and L-phonons, which determine the maximum and minimum values, leads to a nonmonotonic dependence of the orientational anisotropy of the drag thermopower on the thickness of the nanoplate. It is shown that, for square potassium films with {100} and {111} orientations of planes, the drag thermopower is isotropic in the film plane, but, for the {110} orientation, it becomes ellipsoidal with its major axis in the [001] direction. A characteristic feature of drag thermopower in square films is orientation anisotropy. For the [011] directions of the temperature gradient, the drag thermopower in potassium films with the {100} orientations of planes turns out to be significantly greater than with the {110} orientations. It behaves nonmonotonically, reaching a maximum of 57% at a thickness D = 2.2 × 10–5 cm. It is obvious that the effects calculated in this work open up new prospects for experimental studies of electron–phonon drag in metal films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

REFERENCES

  1. I. I. Kuleyev and I. G. Kuleyev, “Effect of phonon focusing on the drag thermopower in single-crystal potassium nanowires at low temperatures,” Phys. Met. Metallogr. 122, 75–82 (2021). https://doi.org/10.1134/S0031918X21020071

    Article  ADS  CAS  Google Scholar 

  2. I. G. Kuleyev and I. I. Kuleyev, “Effect of phonon focusing and shear waves on anisotropy of drag thermopower in potassium nanoplates,” Chin. J. Phys. 72, 351–359 (2021). https://doi.org/10.1016/j.cjph.2021.05.007

    Article  MathSciNet  CAS  Google Scholar 

  3. I. I. Kuleyev and I. G. Kuleyev, “Phonon focusing and anisotropy of drag thermopower in potassium thin films at low temperatures,” J. Phys. Chem. Solids 170, 110948 (2022). https://doi.org/10.1016/j.jpcs.2022.110948

    Article  CAS  Google Scholar 

  4. I. I. Kuleev and I. G. Kuleev, “Dynamic properties and focusing of phonons in metallic and dielectric crystals of cubic symmetry. Review 1,” Phys. Met. Metallogr. 124 (2023).

  5. I. I. Kuleyev and I. G. Kuleyev, “Phonon focusing and anisotropy of the lattice thermal conductivity of potassium crystals at low temperatures,” Phys. Met. Metallogr. 119, 1141–1147 (2018). https://doi.org/10.1134/S0031918X18120098

    Article  ADS  CAS  Google Scholar 

  6. I. I. Kuleyev and I. G. Kuleyev, “Role of quasi-longitudinal and quasi-transverse phonons in the drage thermopower of potassium crystals at low temperatures,” J. Exp. Theor. Phys. 129, 46–58 (2019). https://doi.org/10.1134/S1063776119060141

    Article  ADS  CAS  Google Scholar 

  7. I. G. Kuleyev and I. I. Kuleyev, “The effect of phonon focusing on the electron-phonon relaxation and electron transport in potassium crystals,” Chin. J. Phys. 68, 886–895 (2020). https://doi.org/10.1016/j.cjph.2020.10.005

    Article  MathSciNet  CAS  Google Scholar 

  8. I. I. Kuleyev and I. G. Kuleyev, “Drag thermopower in nanowires and bulk potassium crystals under the conditions of competition between the boundary and bulk mechanisms of phonon relaxation,” J. Phys.: Condens. Matter 31, 375701 (2019). https://doi.org/10.1088/1361-648x/ab271f

    Article  CAS  PubMed  Google Scholar 

  9. I. I. Kuleev and I. G. Kuleev, “Effect of anisotropy of elastic energy on the electron–phonon drag and temperature dependences of thermal emf in potassium crystals at low temperatures,” Phys. Met. Metallogr. 120, 1033–1039 (2019). https://doi.org/10.1134/S0031918X19110103

    Article  ADS  CAS  Google Scholar 

  10. I. I. Kuleev and I. G. Kuleev, “The role of shear waves in electron–phonon drag in potassium crystals at low temperatures,” Phys. Met. Metallogr. 121, 921–928 (2020). https://doi.org/10.1134/s0031918x20100063

    Article  ADS  CAS  Google Scholar 

  11. H. B. G. Casimir, “Note on the conduction of heat in crystals,” Physica 5, 495–500 (1938). https://doi.org/10.1016/s0031-8914(38)80162-2

    Article  ADS  Google Scholar 

  12. A. K. McCurdy, H. J. Maris, and C. Elbaum, “Anisotropic heat conduction in cubic crystals in the boundary scattering regime,” Phys. Rev. B 2, 4077–4083 (1970). https://doi.org/10.1103/physrevb.2.4077

    Article  ADS  Google Scholar 

  13. H. J. Maris, “Enhancement of heat pulses in crystals due to elastic anisotropy,” J. Acoust. Soc. Am. 50, 812–818 (1971). https://doi.org/10.1121/1.1912705

    Article  ADS  CAS  Google Scholar 

  14. D. Li, Yi. Wu, P. Kim, L. Shi, P. Yang, and A. Majumdar, “Thermal conductivity of individual silicon nanowires,” Appl. Phys. Lett. 83, 2934–2936 (2003). https://doi.org/10.1063/1.1616981

    Article  ADS  CAS  Google Scholar 

  15. W. Liu and M. Asheghi, “Phonon–boundary scattering in ultrathin single-crystal silicon layers,” Appl. Phys. Lett. 84, 3819–3821 (2004). https://doi.org/10.1063/1.1741039

    Article  ADS  CAS  Google Scholar 

  16. M. Asheghi, M. N. Touzelbaev, K. E. Goodson, Y. K. Leung, and S. S. Wong, “Temperature-dependent thermal conductivity of single-crystal silicon layers in SOI substrates,” J. Heat Transfer 120, 30–36 (1998). https://doi.org/10.1115/1.2830059

    Article  CAS  Google Scholar 

  17. M. Asheghi, Y. K. Leung, S. S. Wong, and K. E. Goodson, “Phonon-boundary scattering in thin silicon layers,” Appl. Phys. Lett. 71, 1798–1800 (1997). https://doi.org/10.1063/1.119402

    Article  ADS  CAS  Google Scholar 

  18. A. D. McConnell and K. E. Goodson, “Thermal conduction in silicon micro- and nanostructures,” Annu. Rev. Heat Transfer 14, 129–168 (2005). https://doi.org/10.1615/annualrevheattransfer.v14.120

    Article  CAS  Google Scholar 

  19. D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003–2012,” Appl. Phys. Rev. 1, 011305 (2003). https://doi.org/10.1063/1.4832615

    Article  CAS  Google Scholar 

  20. I. G. Kuleyev, I. I. Kuleyev, and S. M. Bakharev, “Phonon focusing and temperature dependences of the thermal conductivity of silicon nanowires,” J. Exp. Theor. Phys. 118, 253–265 (2014). https://doi.org/10.1134/S1063776114020022

    Article  ADS  CAS  Google Scholar 

  21. I. I. Kuleyev, S. M. Bakharev, I. G. Kuleyev, and V. V. Ustinov, “Phonon focusing and temperature dependences of thermal conductivity of silicon nanofilms,” J. Exp. Theor. Phys. 120, 638–650 (2015). https://doi.org/10.1134/S1063776115020144

    Article  ADS  CAS  Google Scholar 

  22. I. G. Kuleyev, I. I. Kuleyev, S. M. Bakharev, and V. V. Ustinov, Phonon Focusing and Phonon Transport: In Single-Crystal Nanostructures, Texts and Monographs in Theoretical Physics (De Gruyter, Berlin, 2020). https://doi.org/10.1515/9783110670509

  23. J. Ziman, Electrons and Phonons (Oxford Univ. Press, Oxford, 1960).

    Google Scholar 

  24. B. M. Mogilevskii and A. F. Chudnovskii, Heat Conductivity of Semiconductors (Nauka, Moscow, 1972).

    Google Scholar 

  25. R. Berman, Thermal Conduction in Solids (Oxford Univ. Press, Oxford, 1976).

    Google Scholar 

  26. M. Knudsen, “Die Gesetze der Molekularströmung und der inneren Reibungsströmung der Gase durch Röhren,” Ann. Phys. 333, 75–130 (1909). https://doi.org/10.1002/andp.19093330106

    Article  Google Scholar 

  27. R. Berman, F. E. Simon, and J. M. Ziman, “The thermal conductivity of diamond at low temperatures,” Proc. R. Soc. London, Ser. A: Math. Phys. Sci. 220, 171–183 (1953). https://doi.org/10.1098/rspa.1953.0180

  28. R. Berman, E. L. Foster, and J. M. Ziman, “Thermal conduction in artificial sapphire crystals at low temperatures I. Nearly perfect crystals,” Proc. R. Soc. London, Ser. A: Math. Phys. Sci. 231, 130–144 (1955). https://doi.org/10.1098/rspa.1955.0161

  29. I. I. Kuleyev, I. G. Kuleyev, S. M. Bakharev, and A. V. Inyushkin, “Relaxation times and mean free paths of phonons in the boundary scattering regime for silicon single crystals,” Phys. Solid State 55, 31–44 (2013). https://doi.org/10.1134/S106378341301023X

    Article  ADS  CAS  Google Scholar 

  30. I. I. Kuleyev, I. G. Kuleyev, S. M. Bakharev, and A. V. Inyushkin, “Features of phonon transport in silicon rods and thin plates in the boundary scattering regime. The effect of phonon focusing at low temperatures,” Phys. B: Condens. Matter 416, 81–87 (2013). https://doi.org/10.1016/j.physb.2013.02.020

    Article  ADS  CAS  Google Scholar 

  31. I. I. Kuleyev, I. G. Kuleyev, S. M. Bakharev, and A. V. Inyushkin, “Effect of phonon focusing on the temperature dependence of thermal conductivity of silicon,” Phys. Status Solidi (b) 251, 991–1000 (2014). https://doi.org/10.1002/pssb.201350332

    Article  CAS  Google Scholar 

  32. I. I. Kuleyev, I. G. Kuleyev, and S. M. Bakharev, “Phonon focusing and features of phonon transport in silicon nanofilms and nanowires at low temperatures,” Phys. Status Solidi (b) 252, 323–332 (2015). https://doi.org/10.1002/pssb.201451364

    Article  CAS  Google Scholar 

  33. I. G. Kuleev and I. I. Kuleev, “Phonon focusing and electron transport in potassium monocrystals. Review 2,” Phys. Met. Metallogr. 124, Suppl. 1, S31–S58 (2023). https://doi.org/10.1134/S0031918X23602093

  34. R. Fletcher, “Scattering of phonons by dislocations in potassium,” Phys. Rev. B 36, 3042–3051 (1987). https://doi.org/10.1103/physrevb.36.3042

    Article  ADS  CAS  Google Scholar 

  35. I. G. Kuleyev and I. I. Kuleyev “The role of shear waves in electron–phonon relaxation and electrical resistivity of noble metals,” Chin. J. Phys. 83, 103–112 (2023). https://doi.org/10.1016/j.cjph.2022.12.010

  36. I. I. Kuleyev and I. G. Kuleyev, “Phonon focusing and anisotropy of drag thermopower in potassium thin films at low temperatures,” J. Phys. Chem. Solids 170, 110948–110957 (2022). https://doi.org/10.1016/j.jpcs.2022.110948

    Article  CAS  Google Scholar 

  37. F. J. Blatt, P. A. Schroeder, C. L. Foiles, and D. Greig, Thermoelectric Power of Metals (Plenum Press, New York, 1976). https://doi.org/10.1007/978-1-4613-4268-7

    Book  Google Scholar 

  38. M. P. Zaitlin, L. M. Scherr, and A. C. Anderson, “Boundary scattering of phonons in noncrystalline materials,” Phys. Rev. B 12, 4487–4492 (1975). https://doi.org/10.1103/physrevb.12.4487

    Article  ADS  Google Scholar 

  39. K. Fuchs, “The conductivity of thin metallic films according to the electron theory of metals,” Math. Proc. Cambridge Philos. Soc. 34, 100–108 (1938). https://doi.org/10.1017/s0305004100019952

    Article  ADS  CAS  Google Scholar 

  40. E. H. Sondheimer, “The mean free path of electrons in metals,” Adv. Phys. 1, 1–42 (1952). https://doi.org/10.1080/00018735200101151

    Article  ADS  Google Scholar 

  41. I. I. Kuleyev, I. G. Kuleyev, and S. M. Bakharev, “Low-temperature anisotropy of the thermal conductivity of single-crystal nanofilms and nanowires,” J. Exp. Theor. Phys. 119, 460–472 (2014). https://doi.org/10.1134/S1063776114090040

    Article  CAS  Google Scholar 

  42. I. I. Kuleyev, S. M. Bakharev, I. G. Kuleyev, and V. V. Ustinov, “Influence of phonon focusing on the Knudsen flow of phonon gas in single-crystal nanofilms of spintronic materials,” Phys. Met. Metallogr. 118, 316–327 (2017). https://doi.org/10.1134/S0031918X17040068

    Article  ADS  CAS  Google Scholar 

  43. M. Smoluchowski, “Zur kinetischen Theorie der Transpiration und Diffusion verdünnter Gase,” Ann. Phys. 338, 1559–1570 (1910). https://doi.org/10.1002/andp.19103381623

    Article  Google Scholar 

  44. H. J. Maris and Sh.-I. Tamura, “Heat flow in nanostructures in the Casimir regime,” Phys. Rev. B 85, 54304 (2012). https://doi.org/10.1103/physrevb.85.054304

    Article  ADS  Google Scholar 

  45. I. I. Kuleev, S. M. Bakharev, I. G. Kuleev, and V. V. Ustinov, “Effect of phonon focusing on Knudsen flow of phonon gas in single-crystal nanowires made of spintronics materials,” Phys. Met. Metallogr. 118, 10–20 (2017). https://doi.org/10.1134/s0031918x17010033

    Article  ADS  CAS  Google Scholar 

  46. J. Philip and K. S. Viswanathan, “Phonon magnification in cubic crystals,” Phys. Rev. B 17, 4969–4978 (1978). https://doi.org/10.1103/physrevb.17.4969

    Article  ADS  CAS  Google Scholar 

  47. A. G. Every, “Ballistic phonons and the shape of the ray surface in cubic crystals,” Phys. Rev. B 24, 3456–3467 (1981). https://doi.org/10.1103/physrevb.24.3456

    Article  ADS  CAS  Google Scholar 

  48. C. Jasiukiewicz, T. Paszkiewicz, and D. Lehmann, “Phonon focussing patterns: Calculation of response of finite area detectors to pulsed ballistic beams of dispersive and dispersionless phonons,” Z. Phys. B Condens. Matter 96, 213–222 (1994). https://doi.org/10.1007/BF01313286

    Article  ADS  CAS  Google Scholar 

  49. M. Lax and V. Narayanamurti, “Phonon magnification and the Gaussian curvature of the slowness surface in anisotropic media: Detector shape effects with application to GaAs,” Phys. Rev. B 22, 4876–4897 (1980). https://doi.org/10.1103/physrevb.22.4876

    Article  ADS  MathSciNet  CAS  Google Scholar 

Download references

Funding

This work was carried out as part of the state assignment of the Ministry of Education and Science of Russia (topic “Function”, no. 122021000035-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Kuleyev.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ADDITIONAL INFORMATION

This review is an English translation of Chapter 3 of the monograph: I.G. Kuleyev and I.I. Kuleyev, The Role of Quasi-Transverse Phonons and Elastic Anisotropy in Electrical Resistivity and Thermoelectric Effects in Alkali and Noble Metals (Ekaterinburg: UMTS UPI, 2023, p. 205. ISBN 978-5-8295-0882-1).

Additional information

Translated by E. Chernokozhin

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuleyev, I.I., Kuleyev, I.G. Effect of Phonon Focusing and Shear Waves on Drag Thermopower in Potassium Single-Crystal Nanostructures at Low Temperatures. Review 3. Phys. Metals Metallogr. 124 (Suppl 1), S60–S86 (2023). https://doi.org/10.1134/S0031918X23602160

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X23602160

Keywords:

Navigation