Skip to main content
Log in

Effect of Titanium Diselenide Doping on the Magnetic State and Transport Properties of FeTe

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The iron–tellurium-based compounds Fe1.1Te(TiSe2)y doped with titanium diselenide (y = 0, 0.04, 0.08, 0.1, 0.2) have been synthesized for the first time and studied by means of X-ray diffraction, electrical resistivity and magnetization measurements. It has been shown that the addition of a small amount of titanium diselenide to single-phase iron telluride with a tetragonal crystal structure leads to the appearance of superconductivity, a decrease in the Néel temperature and contraction of the crystal lattice at y ≥ 0.04. The maximal temperature of the onset of the superconducting transition \(T_{{\text{c}}}^{{{\text{onset}}}}\) ~ 13 K is observed for a sample with the nominal composition Fe1.1Te(TiSe2)0.1. The behavior of the resistivity with temperature below \(T_{{\text{c}}}^{{{\text{onset}}}}\) is observed to depend on the current value, which may indicate superconductivity characteristic of granular superconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. K. Mukasa, K. Matsuura, M. Qiu, M. Saito, Y. Sugimura, K. Ishida, M. Otani, Y. Onishi, Y. Mizukami, K. Hashimoto, J. Gouchi, R. Kumai, Y. Uwatoko, and T. Shibauchi, “High-pressure phase diagrams of FeSe1 − xTex: Correlation between suppressed nematicity and enhanced superconductivity,” Nat. Commun. 12, 381 (2021). https://doi.org/10.1038/s41467-020-20621-2

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. K. Matsuura, Y. Mizukami, Y. Arai, Y. Sugimura, N. Maejima, A. Machida, T. Watanuki, T. Fukuda, T. Yajima, Z. Hiroi, K. Y. Yip, Y. C. Chan, Q. Niu, S. Hosoi, K. Ishida, K. Mukasa, S. Kasahara, J.‑G. Cheng, S. K. Goh, Y. Matsuda, Y. Uwatoko, and T. Shibauchi, “Maximizing Tc by tuning nematicity and magnetism in FeSe1 − xSx superconductors,” Nat. Commun. 8, 1143 (2017). https://doi.org/10.1038/s41467-017-01277-x

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. A. S. Tsapleva, I. M. Abdyukhanov, V. I. Pantsyrnyi, M. V. Alekseev, and D. N. Rakov, “The materials science of modern technical superconducting materials,” Phys. Met. Metallogr. 123, 839–868 (2022). https://doi.org/10.1134/s0031918x22090125

    Article  ADS  CAS  Google Scholar 

  4. Yo. Mizuguchi, F. Tomioka, S. Tsuda, T. Yamaguchi, and Yo. Takano, “Substitution effects on FeSe superconductor,” J. Phys. Soc. Jpn. 78, 074712 (2009). https://doi.org/10.1143/jpsj.78.074712

    Article  ADS  Google Scholar 

  5. Yo. Mizuguchi, F. Tomioka, S. Tsuda, T. Yamaguchi, and Yo. Takano, “Superconductivity in S-substituted FeTe,” Appl. Phys. Lett. 94, 012503 (2009). https://doi.org/10.1063/1.3058720

    Article  ADS  CAS  Google Scholar 

  6. Yo. Mizuguchi and Yo. Takano, “Review of Fe chalcogenides as the simplest Fe-based superconductor,” J. Phys. Soc. Jpn. 79, 102001 (2010). https://doi.org/10.1143/jpsj.79.102001

    Article  ADS  Google Scholar 

  7. F.-Ch. Hsu, J.-Yo. Luo, K.-W. Yeh, T.-K. Chen, T.‑W. Huang, P. M. Wu, Yo.-Ch. Lee, Yi-L. Huang, Ya.-Yi. Chu, D.-Ch. Yan, and M.-K. Wu, “Superconductivity in the PbO-type structure α-FeSe,” Proc. Natl. Acad. Sci. U. S. A. 105, 14262–14264 (2008). https://doi.org/10.1073/pnas.0807325105

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  8. M. H. Fang, H. M. Pham, B. Qian, T. J. Liu, E. K. Vehstedt, Y. Liu, L. Spinu, and Z. Q. Mao, “Superconductivity close to magnetic instability in Fe(Se1 – xTex)0.82,” Phys. Rev. B 78, 224503 (2008). https://doi.org/10.1103/physrevb.78.224503

    Article  ADS  Google Scholar 

  9. K.-W. Yeh, T.-W. Huang, Yi-L. Huang, T.-K. Chen, F.-Ch. Hsu, P. M. Wu, Yo.-Ch. Lee, Ya.-Yi. Chu, Ch.‑L. Chen, J.-Yo. Luo, D.-Ch. Yan, and M.-K. Wu, “Tellurium substitution effect on superconductivity of the α-phase iron selenide,” EPL 84, 37002 (2008). https://doi.org/10.1209/0295-5075/84/37002

    Article  ADS  CAS  Google Scholar 

  10. P. K. Maheshwari, R. Jha, B. Gahtori, and V. P. S. Awana, “Structural and magnetic properties of flux-free large FeTe single crystal,” J. Supercond. Novel Magn. 28, 2893–2897 (2015). https://doi.org/10.1007/s10948-015-3173-8

    Article  CAS  Google Scholar 

  11. S. Li, C. De La Cruz, Q. Huang, Y. Chen, J. W. Lynn, J. Hu, Yi. Huang, F.-Ch. Hsu, K. Yeh, M.-K. Wu, and P. Dai, “First-order magnetic and structural phase transitions in Fe1 + ySexTe1 – x,” Phys. Rev. B 79, 054503 (2009). https://doi.org/10.1103/physrevb.79.054503

    Article  ADS  Google Scholar 

  12. A. Martinelli, A. Palenzona, M. Tropeano, C. Ferdeghini, M. Putti, M. R. Cimberle, T. D. Nguyen, M. Affronte, and C. Ritter, “From antiferromagnetism to superconductivity in Fe1 + yTe1 – xSex (0 ≤ x ≤ 0.20): Neutron powder diffraction analysis,” Phys. Rev. B 81 (2010). https://doi.org/10.1103/physrevb.81.094115

  13. D. Fobes, I. A. Zaliznyak, Z. Xu, R. Zhong, G. Gu, J. M. Tranquada, L. Harriger, D. Singh, V. O. Garlea, M. Lumsden, and B. Winn, “Ferro-orbital ordering transition in iron telluride Fe1 + yTe,” Phys. Rev. Lett. 112, 187202 (2014). https://doi.org/10.1103/physrevlett.112.187202

    Article  ADS  PubMed  Google Scholar 

  14. Md. M. H. Polash and D. Vashaee, “Anomalous thermoelectric transport properties of fe-rich magnetic fete,” Phys. Status Solidi RRL 15, 2100231 (2021). https://doi.org/10.1002/pssr.202100231

  15. W. Bao, Y. Qiu, Q. Huang, M. A. Green, P. Zajdel, M. R. Fitzsimmons, M. Zhernenkov, S. Chang, M. Fang, B. Qian, and others, “Tunable (δπ, δπ)-type antiferromagnetic order in α-Fe(Te,Se) superconductors,” Phys. Rev. Lett. 102, 247001 (2009). https://doi.org/10.1103/PhysRevLett.102.247001

    Article  ADS  CAS  PubMed  Google Scholar 

  16. A. Subedi, L. Zhang, D. J. Singh, and M. H. Du, “Density functional study of FeS, FeSe, and FeTe: Electronic structure, magnetism, phonons, and superconductivity,” Phys. Rev. B 78, 134514 (2008). https://doi.org/10.1103/physrevb.78.134514

    Article  ADS  Google Scholar 

  17. R. Khasanov, M. Bendele, A. Amato, P. Babkevich, A. T. Boothroyd, A. Cervellino, K. Conder, S. N. Gvasa-liya, H. Keller, H.-H. Klauss, H. Luetkens, V. Pomjakushin, E. Pomjakushina, and B. Roessli, “Coexistence of incommensurate magnetism and superconductivity in Fe1 + ySexTe1 – x,” Phys. Rev. B 80 (14) (2009). https://doi.org/10.1103/physrevb.80.140511

  18. W. Zhou, Yu. Sun, S. Zhang, J. Zhuang, F. Yuan, X. Li, Z. Shi, T. Yamada, Yu. Tsuchiya, and T. Tamegai, “Bulk superconductivity in Fe1 + yTe0.6Se0.4 induced by removal of excess Fe,” J. Phys. Soc. Jpn. 83, 064704 (2014). https://doi.org/10.7566/jpsj.83.064704

    Article  ADS  Google Scholar 

  19. Ch.-Yo. Moon and H. J. Choi, “Chalcogen-height dependent magnetic interactions and magnetic order switching in FeSexTe1 – x,” Phys. Rev. Lett. 104, 057003 (2010). https://doi.org/10.1103/physrevlett.104.057003

    Article  ADS  PubMed  Google Scholar 

  20. Q. Ma, Q. Gao, W. Shan, X. Li, H. Li, and Z. Ma, “The superconductivity and transport properties in FeTe with S addition,” Vacuum 195, 110661 (2022). https://doi.org/10.1016/j.vacuum.2021.110661

    Article  ADS  CAS  Google Scholar 

  21. P. Zajdel, P. Hsieh, E. E. Rodriguez, N. P. Butch, J. D. Magill, J. Paglione, P. Zavalij, M. R. Suchomel, and M. A. Green, “Phase separation and suppression of the structural and magnetic transitions in superconducting doped iron tellurides, Fe1 + xTe1 – ySy,” J. Am. Chem. Soc. 132, 13000–13007 (2010). https://doi.org/10.1021/ja105279p

    Article  CAS  PubMed  Google Scholar 

  22. V. P. S. Awana, A. Pal, A. Vajpayee, B. Gahtori, and H. Kishan, “Superconductivity and thermal properties of sulphur doped FeTe with effect of oxygen post annealing,” Phys. C: Supercond. 471, 77–82 (2011). https://doi.org/10.1016/j.physc.2010.11.006

    Article  ADS  CAS  Google Scholar 

  23. L. Zhang, D. J. Singh, and M.-H. H. Du, “Density functional study of excess Fe in Fe1 + xTe: Magnetism and doping,” Phys. Rev. B 79, 012506 (2009). https://doi.org/10.1103/physrevb.79.012506

    Article  ADS  Google Scholar 

  24. T. J. Liu, J. Hu, B. Qian, D. Fobes, Z. Q. Mao, W. Bao, M. Reehuis, S. A. J. Kimber, K. Prokeš, S. Matas, D. N. Argyriou, A. Hiess, A. Rotaru, H. Pham, L. Spinu, Y. Qiu, V. Thampy, A. T. Savici, J. A. Rodriguez, and C. Broholm, “From (π, 0) magnetic order to superconductivity with (π, π) magnetic resonance in Fe1.02Te1 − xSex,” Nat. Mater. 9, 718–720 (2010). https://doi.org/10.1038/nmat2800

    Article  ADS  CAS  Google Scholar 

  25. J. Janaki, R. Govindaraj, T. G. Kumary, A. Mani, G. V. N. Rao, and A. Bharathi, “Synthesis, electrical transport and Mössbauer spectroscopy study of the layered iron tellurides Fe1.1 – xNixTe,” Physica Status Solidi (b) 249, 134–137 (2012). https://doi.org/10.1002/pssb.201147275

    Article  ADS  CAS  Google Scholar 

  26. J. Janaki, T. Geetha Kumary, N. Thirumurugan, A. Mani, A. Das, G. V. Narasimha Rao, and A. Bharathi, “Influence of Ni doping on the low temperature properties of layered Fe1 + δTe,” J. Supercond. Novel Magn. 25, 209–214 (2012). https://doi.org/10.1007/s10948-011-1275-5

    Article  CAS  Google Scholar 

  27. Ya. Zhu, L. Li, Z. Yang, Z. Zhang, B. Yuan, J. Chen, H. Du, Yu. Sun, and Yu. Zhang, “Co-doping effects on the transport and magnetic properties of FeTe,” J. Magn. Magn. Mater. 397, 1–5 (2016). https://doi.org/10.1016/j.jmmm.2015.08.067

    Article  ADS  CAS  Google Scholar 

  28. C. Cheng, Z. Feng, Q. Li, T. Li, Q. Hou, F. Chen, Z. Ou, J.-Yi. Ge, S. Cao, and J. Zhang, “K-doping effect of the superconductivity in K2xFeTe1 – xSx (0.07 ≤ x ≤ 0.3),” Curr. Appl. Phys. 19, 475–479 (2019). https://doi.org/10.1016/j.cap.2019.01.020

    Article  ADS  Google Scholar 

  29. H. Wang, C. Dong, Z. Li, J. Yang, Q. Mao, and M. Fang, “Evolution from antiferromagnetic order to spin-glass state in Fe1.05–xCuxTe system,” Phys. Lett. A 376, 3645–3648 (2012). https://doi.org/10.1016/j.physleta.2012.10.028

    Article  ADS  CAS  Google Scholar 

  30. I. I. Gimazov, A. G. Kiiamov, N. M. Lyadov, A. N. Vasiliev, D. A. Chareev, and Yu. I. Talanov, “Impact of impurity phases and superstoichiometric iron on the critical temperature of iron chalcogenides,” JETP Lett. 113, 454–460 (2021). https://doi.org/10.1134/s0021364021070067

    Article  ADS  CAS  Google Scholar 

  31. S. Hartwig, N. Schäfer, M. Schulze, S. Landsgesell, D. Abou-Ras, Ch. G. F. Blum, S. Wurmehl, A. Sokolowski, B. Büchner, and K. Prokeš, “Inhomogeneities and superconductivity in poly-phase Fe−Se−Te systems,” Phys. B: Condens. Matter 531, 102–109 (2018). https://doi.org/10.1016/j.physb.2017.12.024

    Article  ADS  CAS  Google Scholar 

  32. A. K. Yadav, A. V. Sanchela, A. D. Thakur, and C. V. Tomy, “Effect of nominal substitution of transition metals for excess Fe in Fe1 + xSe superconductor,” Solid State Commun. 202, 8–13 (2015). https://doi.org/10.1016/j.ssc.2014.10.027

    Article  ADS  CAS  Google Scholar 

  33. Z. T. Zhang, Z. R. Yang, W. J. Lu, X. L. Chen, L. Li, Y. P. Sun, C. Y. Xi, L. S. Ling, C. J. Zhang, L. Pi, M. L. Tian, and Y. H. Zhang, “Superconductivity in Fe1.05Te:Ox single crystals,” Phys. Rev. B 88 (2013). https://doi.org/10.1103/physrevb.88.214511

  34. J. Janaki, T. G. Kumary, A. Mani, E. P. Amaladass, N. R. Raveendran, P. Magudapathy, S. Kalavathi, T. N. Sairam, and T. R. Ravindran, “Characterization and low temperature study of iron telluride thin films upon ageing and oxygen ion irradiation,” J. Supercond. Novel Magn. 27, 2639–2643 (2014). https://doi.org/10.1007/s10948-014-2635-8

    Article  CAS  Google Scholar 

  35. L. Fan, P. Cheng, J. Han, P. Yuan, W. Sun, W. Lu, Q. Xiao, J. Ge, J. Zhang, and F. Chen, “Annealing effects on the structural, surface, and superconducting properties of FeTe0.55Se0.45 single crystals,” J. Supercond. Novel Magn. 34, 1739–1744 (2021). https://doi.org/10.1007/s10948-020-05727-4

    Article  CAS  Google Scholar 

  36. X. Li, Yu. Sun, Yu. Zhang, W. Zhou, F. Yuan, and Z. Shi, “Improvement of superconductivity in Fe1 + yTe0.6Se0.4 induced by annealing with CaF2 and SmF3,” Phys. C: Supercond. its Appl. 517, 16–19 (2015). https://doi.org/10.1016/j.physc.2015.07.007

  37. Yu. J. Li, Z. P. Wu, Yu. H. An, G. F. Wang, C. L. Sun, Ya. T. Huang, P. G. Li, L. H. Li, and W. H. Tang, “Influence of nitrogen atmosphere annealing on structural and transport properties of Fe1.125Te,” Adv. Mater. Res. 936, 1234–1238 (2014). https://doi.org/10.4028/www.scientific.net/amr.936.1234

  38. A. F. Kusmartseva, B. Sipos, H. Berger, L. Forró, and E. Tutiš, “Pressure induced superconductivity in Pristine 1T-TiSe2,” Phys. Rev. Lett. 103, 236401 (2009). https://doi.org/10.1103/physrevlett.103.236401

    Article  ADS  CAS  PubMed  Google Scholar 

  39. J. Rodriguez-Carvajal, “Recent developments of the program Fullprof,” Newsl. Commun. Powder Diffr. (IUCr) 26, 12–19 (2001).

    Google Scholar 

  40. P. D. Lodhi, N. Solanki, K. K. Choudhary, and N. Kaurav, “Investigation of transport properties of FeTe compound,” AIP Conf. Proc. 1953, 120031 (1953). https://doi.org/10.1063/1.5033096

    Article  CAS  Google Scholar 

  41. H. Okamoto and L. E. Tanner, “The Fe−Te (iron−tellurium) system,” Bull. Alloy Phase Diagrams 11, 371–376 (1990). https://doi.org/10.1007/bf02843316

    Article  CAS  Google Scholar 

  42. C.-M. Arvhult, S. Poissonnet, D. Menut, S. Gossé, and C. Guéneau, “Thermodynamic assessment of the Fe−Te system. Part I: Experimental study,” J. Alloys Compd. 773, 314–326 (2019). https://doi.org/10.1016/j.jallcom.2018.09.265

    Article  CAS  Google Scholar 

  43. T. Hirota, Y. Ueda, and K. Kosuge, “Phase diagram of the TiSex system (0.95 ≤ x ≤ 2.00),” Mater. Res. Bull. 23, 1641–1650 (1988). https://doi.org/10.1016/0025-5408(88)90254-1

    Article  CAS  Google Scholar 

  44. B. C. Sales, A. S. Sefat, M. A. McGuire, R. Y. Jin, D. Mandrus, and Y. Mozharivskyj, “Bulk Superconductivity at 14 K in single crystals of Fe1 + yTexSe1 – x,” Phys. Rev. B 79, 094521 (2009). https://doi.org/10.1103/PhysRevB.79.094521

    Article  ADS  CAS  Google Scholar 

  45. C. Dong, H. Wang, Z. Li, J. Chen, H. Q. Yuan, and M. Fang, “Revised phase diagram for the FeTe1 – xSex system with fewer excess Fe atoms,” Phys. Rev. B 84, 224506 (2011). https://doi.org/10.1103/PhysRevB.84.224506

    Article  ADS  CAS  Google Scholar 

  46. Yi. Qiu, W. Bao, Y. Zhao, C. Broholm, V. Stanev, Z. Tesanovic, Y. C. Gasparovic, S. Chang, J. Hu, B. Qian, M. Fang, and Z. Mao, “Spin gap and resonance at the nesting wave vector in superconducting FeSe0.4Te0.6,” Phys. Rev. Lett. 103, 067008 (2009). https://doi.org/10.1103/physrevlett.103.067008

    Article  ADS  PubMed  Google Scholar 

  47. M. Tropeano, I. Pallecchi, M. R. Cimberle, C. Ferdeghini, G. Lamura, M. Vignolo, A. Martinelli, A. Palenzona, and M. Putti, “Transport and superconducting properties of Fe-based superconductors: A comparison between SmFeAsO1–xFx and Fe1+yTe1–xSex,” Superconductor Sci. Technol. 23, 054001 (2010). https://doi.org/10.1088/0953-2048/23/5/054001

    Article  ADS  CAS  Google Scholar 

  48. D. J. Gawryluk, J. Fink-Finowicki, A. Wiśniewski, R. Puźniak, V. Domukhovski, R. Diduszko, M. Kozłowski, and M. Berkowski, “Growth conditions, structure and superconductivity of pure and metal-doped FeTe1 – xSex single crystals,” Superconductor Sci. Technol. 24, 065011 (2011). https://doi.org/10.1088/0953-2048/24/6/065011

    Article  ADS  CAS  Google Scholar 

  49. C. S. Yadav and P. L. Paulose, “Upper critical field, lower critical field and critical current density of FeTe0.60Se0.40 single crystals,” New J. Phys. 11, 103046 (2009). https://doi.org/10.1088/1367-2630/11/10/103046

    Article  ADS  CAS  Google Scholar 

  50. S. Holleis, A. Anna Thomas, I. A. Shipulin, R. Hühne, A. Steiger-Thirsfeld, J. Bernardi, and M. Eisterer, “Magnetic granularity in PLD-grown Fe(Se,Te) films on simple RABiTS templates,” Superconductor Sci. Technol. 35, 074001 (2022). https://doi.org/10.1088/1361-6668/ac6cab

    Article  ADS  CAS  Google Scholar 

  51. I. A. Zaliznyak, Z. J. Xu, J. S. Wen, J. M. Tranquada, G. D. Gu, V. Solovyov, V. N. Glazkov, A. I. Zheludev, V. O. Garlea, and M. B. Stone, “Continuous magnetic and structural phase transitions in Fe1 + yTe,” Phys. Rev. B 85 (2012). https://doi.org/10.1103/physrevb.85.085105

  52. X. F. Wang, Z. T. Zhang, X. L. Chen, X. C. Kan, L. Li, Y. P. Sun, L. Zhang, C. Y. Xi, L. Pi, Z. R. Yang, and Y. H. Zhang, “Doping effects of Sb in FeTe1 − xSbx single crystals,” Phys. C: Supercond. Its Appl. 513, 39–42 (2015). https://doi.org/10.1016/j.physc.2015.03.017

    Article  ADS  CAS  Google Scholar 

  53. C. Koz, S. Rößler, A. A. Tsirlin, C. Zor, G. Armağan, S. Wirth, and U. Schwarz, “Effect of Co and Ni substitution on the two magnetostructural phase transitions in Fe1.12Te,” Phys. Rev. B 93, 024504 (2016). https://doi.org/10.1103/physrevb.93.024504

    Article  ADS  Google Scholar 

  54. H. Takahashi, H. Okada, H. Takahashi, Yo. Mizuguchi, and Yo. Takano, “Electrical resistivity measurements under high pressure for FeTe0.92,” J. Phys.: Conf. Ser. 200, 012196 (2010). https://doi.org/10.1088/1742-6596/200/1/012196

    Article  CAS  Google Scholar 

  55. K. Mydeen, D. Kasinathan, C. Koz, S. Rößler, U. K. Rößler, M. Hanfland, A. A. Tsirlin, U. Schwarz, S. Wirth, H. Rosner, and M. Nicklas, “Pressure-induced ferromagnetism due to an anisotropic electronic topological transition in Fe1.08Te,” Phys. Rev. Lett. 119 (2017). https://doi.org/10.1103/physrevlett.119.227003

  56. J. Tian, V. N. Ivanovski, M. Abeykoon, R. M. Martin, S. Baranets, C. Martin, Yu. Liu, Q. Du, A. Wang, S. Chen, X. Tong, W. Zhang, S. Bobev, V. Koteski, and C. Petrovic, “Absence of long-range magnetic order in Fe1 – δTe2 (δ ≈ 0.1) crystals,” Phys. Rev. B 104, 224109 (2021). https://doi.org/10.1103/physrevb.104.224109

    Article  ADS  CAS  Google Scholar 

  57. S. Chen, H. Liu, F. Chen, K. Zhou, and Yu. Xue, “Synthesis, transfer, and properties of layered FeTe2 nanocrystals,” ACS Nano 14, 11473–11481 (2020). https://doi.org/10.1021/acsnano.0c03863

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (grant no. 22-13-00158).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Kislov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kislov, E., Selezneva, N.V., Sherokalova, E.M. et al. Effect of Titanium Diselenide Doping on the Magnetic State and Transport Properties of FeTe. Phys. Metals Metallogr. 124, 1204–1215 (2023). https://doi.org/10.1134/S0031918X23602123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X23602123

Keywords:

Navigation