Skip to main content
Log in

Permalloy-Based 2D-Magnetoplasmonic Crystals: Synthesis and Magneto-Optical Properties

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

An Erratum to this article was published on 01 February 2024

This article has been updated

Abstract

In this work we demonstrate the fabrication protocol of 2D-magnetoplasmonic crystals consisting of permalloy column arrays. Dependences of morphological, magnetic, optical, and magneto-optical properties of 2D-magnetoplasmonic crystals on the e-beam exposition dose are studied. Proposed protocol is suitable for the fabrication of 2D-structures with controllable dimensions and morphology of individual columns having substantial potential for applications as sensitive magnetic field probes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Change history

REFERENCES

  1. M. Kim, N. Park, H. J. Lee, and J. Rho, “The latest trends in nanophotonics,” Nanophotonics 11, 2389–2392 (2022). https://doi.org/10.1515/nanoph-2022-0191

    Article  Google Scholar 

  2. Yu. Wang, M. Li, J.-K. Chang, D. Aurelio, W. Li, B. J. Kim, J. H. Kim, M. Liscidini, J. A. Rogers, and F. G. Omenetto, “Light-activated shape morphing and light-tracking materials using biopolymer-based programmable photonic nanostructures,” Nat. Commun. 12, 1651 (2021). https://doi.org/10.1038/s41467-021-21764-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. R. V. Nair, F. Wang, X. Yang, and C. Jagadish, “Photonic materials: From fundamentals to applications,” Eur. Phys. J. Special Top. 231, 583–587 (2022). https://doi.org/10.1140/epjs/s11734-022-00541-6

    Article  Google Scholar 

  4. A. Yadav, N. Yadav, V. Agrawal, S. P. Polyutov, A. S. Tsipotan, S. V. Karpov, V. V. Slabko, V. S. Yadav, Yo. Wu, H. Zheng, and S. Ramakrishna, “State-of-art plasmonic photonic crystals based on self-assembled nanostructures,” J. Mater. Chem. C 9, 3368–3383 (2021). https://doi.org/10.1039/d0tc05254j

    Article  CAS  Google Scholar 

  5. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). https://doi.org/10.1038/nature01937

    Article  CAS  PubMed  Google Scholar 

  6. A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: Surface plasmon polaritons and localized surface plasmons,” J. Opt. A: Pure Appl. Opt. 5, S16–S50 (2003). https://doi.org/10.1088/1464-4258/5/4/353

    Article  CAS  Google Scholar 

  7. K. Yang, X. Yao, B. Liu, and B. Ren, “Metallic plasmonic array structures: Principles, fabrications, properties, and applications,” Adv. Mater. 33, 2007988 (2021). https://doi.org/10.1002/adma.202007988

    Article  CAS  Google Scholar 

  8. Z. Wang, J. Chen, S. A. Khan, F. Li, J. Shen, Q. Duan, X. Liu, and J. Zhu, “Plasmonic metasurfaces for medical diagnosis applications: A review,” Sensors 22, 133 (2022). https://doi.org/10.3390/s22010133

    Article  CAS  Google Scholar 

  9. N. Jiang, X. Zhuo, and J. Wang, “Active plasmonics: Principles, structures, and applications,” Chem. Rev. 118, 3054–3099 (2017). https://doi.org/10.1021/acs.chemrev.7b00252

    Article  CAS  PubMed  Google Scholar 

  10. V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6, 370–376 (2011). https://doi.org/10.1038/nnano.2011.54

    Article  CAS  PubMed  Google Scholar 

  11. M. A. Kiryanov, A. Yu. Frolov, I. A. Novikov, P. A. Kipp, P. K. Nurgalieva, V. V. Popov, A. A. Ezhov, T. V. Dolgova, and A. A. Fedyanin, “Surface profile-tailored magneto-optics in magnetoplasmonic crystals,” APL Photonics 7 (2022). https://doi.org/10.1063/5.0072698

  12. C. Rizal, V. Belotelov, D. Ignatyeva, A. K. Zvezdin, and S. Pisana, “Surface plasmon resonance (SPR) to magneto-optic SPR,” Condens. Matter 4, 50 (2019). https://doi.org/10.3390/condmat4020050

    Article  Google Scholar 

  13. J. Qin, S. Xia, W. Yang, H. Wang, W. Yan, Yu. Yang, Z. Wei, W. Liu, Yi. Luo, L. Deng, and L. Bi, “Nanophotonic devices based on magneto-optical materials: recent developments and applications,” Nanophotonics 11, 2639–2659 (2022). https://doi.org/10.1515/nanoph-2021-0719

    Article  CAS  Google Scholar 

  14. A. I. Musorin, A. V. Chetvertukhin, T. V. Dolgova, H. Uchida, M. Inoue, B. S. Luk’yanchuk, and A. A. Fedyanin, “Tunable multimodal magnetoplasmonic metasurfaces,” Appl. Phys. Lett. 115 (2019). https://doi.org/10.1063/1.5124445

  15. G. A. Knyazev, P. O. Kapralov, N. A. Gusev, A. N. Kalish, P. M. Vetoshko, S. A. Dagesyan, A. N. Shaposhnikov, A. R. Prokopov, V. N. Berzhansky, A. K. Zvezdin, and V. I. Belotelov, “Magnetoplasmonic crystals for highly sensitive magnetometry,” ACS Photonics 5, 4951–4959 (2018). https://doi.org/10.1021/acsphotonics.8b01135

    Article  CAS  Google Scholar 

  16. V. K. Belyaev, V. V. Rodionova, A. A. Grunin, M. Inoue, and A. A. Fedyanin, “Magnetic field sensor based on magnetoplasmonic crystal,” Sci. Rep. 10, 7133 (2020). https://doi.org/10.1038/s41598-020-63535-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: Combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1, 10–35 (2013). https://doi.org/10.1002/adom.201200011

    Article  Google Scholar 

  18. V. K. Belyaev, D. Murzin, J. C. Martínez-García, M. Rivas, N. V. Andreev, A. G. Kozlov, A. Yu. Samardak, A. V. Ognev, A. S. Samardak, and V. Rodionova, “FORC-diagram analysis for a step-like magnetization reversal in nanopatterned stripe array,” Materials 14, 7523 (2021). https://doi.org/10.3390/ma14247523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. V. K. Belyaev, D. V. Murzin, N. N. Perova, A. A. Grunin, A. A. Fedyanin, and V. V. Rodionova, “Permalloy-based magnetoplasmonic crystals for sensor applications,” J. Magn. Magn. Mater. 482, 292–295 (2019). https://doi.org/10.1016/j.jmmm.2019.03.052

    Article  CAS  Google Scholar 

  20. V. K. Belyaev, D. V. Murzin, A. G. Kozlov, A. A. Grunin, A. S. Samardak, A. V. Ognev, A. A. Fedyanin, M. Inoue, and V. V. Rodionova, “Engineering of optical, magneto-optical and magnetic properties of nickel-based one-dimensional magnetoplasmonic crystals,” Jpn. J. Appl. Phys. 59, SEEA08 (2020). https://doi.org/10.35848/1347-4065/ab71df

  21. V. K. Belyaev, A. G. Kozlov, A. V. Ognev, A. S. Samardak, and V. V. Rodionova, “Magnetic properties and geometry-driven magnetic anisotropy of magnetoplasmonic crystals,” J. Magn. Magn. Mater. 480, 150–153 (2019). https://doi.org/10.1016/j.jmmm.2019.02.032

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Russian Science Foundation under Project no. 22-22-00997.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Belyaev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigoreva, Z.A., Murzin, D.V., Gritsenko, C.A. et al. Permalloy-Based 2D-Magnetoplasmonic Crystals: Synthesis and Magneto-Optical Properties. Phys. Metals Metallogr. 124, 1682–1688 (2023). https://doi.org/10.1134/S0031918X2360197X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X2360197X

Keywords:

Navigation