Skip to main content
Log in

Effects of Bi Inclusion on Tensile Mechanical Property and Deformation Mechanism of Nanopolycrystalline Fe: A Molecular Dynamics study

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The effects of bismuth inclusion on the mechanical properties and deformation mechanisms of nanopolycrystalline iron under uniaxial tensile loading were investigated using molecular dynamics simulations. The analysis of the stress-strain behavior of polycrystalline pure Fe and alloy containing Bi inclusion shows that the Young’s modulus of the latter is lower, the strain into the yield stage is smaller, and the yield strength is significantly decreased. Microscopic analysis of pure Fe polycrystalline and Fe–Bi polycrystalline systems with small grain size shows that the deformation mechanisms of pure Fe polycrystalline systems are mainly grain boundary migration, grain boundary slip and grain twisting, while a limited amount of twinning can be observed. The deformation of Fe–Bi system is accomplished based on the deformation mechanism of pure Fe system combined with the shear slip of atoms in Bi inclusion and adjacent region. Meanwhile, the nucleation and growth of cavity can be observed inside the inclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

DATA AVAILABILITY

Data will be made available on request.

REFERENCES

  1. D. Lou, K. Cui, and Y. Jia, “Study on the machinability of resulfurized composite free-cutting steels,” J. Mater. Eng. Perform. 6, 215–218 (1997). https://doi.org/10.1007/s11665-997-0017-0

    Article  CAS  Google Scholar 

  2. Z. Li and D. Wu, “Effect of free-cutting additives on machining characteristics of austenitic stainless steels,” J. Mater. Sci. Technol. 26, 839–844 (2010). https://doi.org/10.1016/s1005-0302(10)60134-x

    Article  CAS  Google Scholar 

  3. Yu. Li, T. Suzuki, N. Tang, Yu. Koizumi, and A. Chiba, “Microstructure evolution of SUS303 free-cutting steel during hot compression process,” Mater. Sci. Eng., A 583, 161–168 (2013). https://doi.org/10.1016/j.msea.2013.06.069

    Article  CAS  Google Scholar 

  4. Yi. Guo, Q. Wang, G. Chen, and S. He, “Castability of aluminum- and sulfur-bearing free-cutting steel,” J. Iron Steel Res. Int. 22 (S1), 87–92 (2015). https://doi.org/10.1016/s1006-706x(15)30144-8

    Article  Google Scholar 

  5. P. Zhang, Z. Zeng, T. Fan, P. Shen, and J. Fu, “Deep analysis of free-cutting phase and its distribution in japanese SF20T pen tip steel,” IOP Conf. Ser.: Mater. Sci. Eng. 611, 012019 (2019). https://doi.org/10.1088/1757-899x/611/1/012019

  6. D. Wu and Z. Li, “A new Pb-free machinable austenitic stainless steel,” J. Iron Steel Res. Int. 17, 59–63 (2010). https://doi.org/10.1016/s1006-706x(10)60046-5

    Article  CAS  Google Scholar 

  7. H. T. Liu and W. Q. Chen, “Hot ductility of eco-friendly low carbon resulphurised free cutting steel with bismuth,” Ironmaking Steelmaking 41, 19–25 (2014). https://doi.org/10.1179/1743281212y.0000000095

    Article  ADS  Google Scholar 

  8. H. Yaguchi, “Effect of soft additives (Pb/Bi) on machinability of low carbon resulphurised free machining steels,” Mater. Sci. Technol. 5, 255–267 (1989). https://doi.org/10.1179/mst.1989.5.3.255

    Article  ADS  CAS  Google Scholar 

  9. H. T. Liu and W. Q. Chen, “Research on recovery for adding low melting point metal bismuth to eco-friendly Bi–S based free cutting steel,” Ironmaking Steelmaking 41, 355–359 (2014). https://doi.org/10.1179/1743281213y.0000000160

    Article  CAS  Google Scholar 

  10. H. Fu, J. Rydel, A. Gola, F. Yu, K. Geng, C. Lau, H. Luo, and P. Rivera-Díaz-Del-Castillo, “The relationship between 100Cr6 steelmaking, inclusion microstructure and rolling contact fatigue performance,” Int. J. Fatigue 129, 104899 (2018). https://doi.org/10.1016/j.ijfatigue.2018.11.011

    Article  CAS  Google Scholar 

  11. M. Wu, W. Fang, R. Chen, B. Jiang, H. Wang, Ya. Liu, and H. Liang, “Mechanical anisotropy and local ductility in transverse tensile deformation in hot rolled steels: The role of MnS inclusions,” Mater. Sci. Eng.: A 744, 324–334 (2018). https://doi.org/10.1016/j.msea.2018.12.026

    Article  CAS  Google Scholar 

  12. A. L. V. da Costa e Silva, “The effects of non-metallic inclusions on properties relevant to the performance of steel in structural and mechanical applications,” J. Mater. Res. Technol. 8, 2408–2422 (2019). https://doi.org/10.1016/j.jmrt.2019.01.009

    Article  CAS  Google Scholar 

  13. K. Huang, K. Marthinsen, Q. Zhao, and R. Logé, “The double-edge effect of second-phase particles on the recrystallization behaviour and associated mechanical properties of metallic materials,” Prog. Mater. Sci. 92, 284–359 (2018). https://doi.org/10.1016/j.pmatsci.2017.10.004

    Article  CAS  Google Scholar 

  14. K. Hajizadeh and K. J. Kurzydlowski, “Microstructure evolution and mechanical properties of AISI 316H austenitic stainless steel processed by warm multi-pass ecap,” Phys. Met. Metallogr. 122, 931–938 (2021). https://doi.org/10.1134/s0031918x21300013

    Article  ADS  CAS  Google Scholar 

  15. A. E. Svirid, V. G. Pushin, N. N. Kuranova, V. V. Makarov, and A. N. Uksusnikov, “The effect of heat treatment on the structure and mechanical properties of nanocrystalline Cu–14Al–3Ni alloy subjected to high-pressure torsion,” Phys. Met. Metallogr. 122, 883–890 (2021). https://doi.org/10.1134/s0031918x21090131

    Article  ADS  CAS  Google Scholar 

  16. V. E. Porsev, A. L. Ul’yanov, and G. A. Dorofeev, “Short-range order evolution in nanocrystalline mechanically activated Fe–Cr alloys in the process of annealing,” Phys. Met. Metallogr. 121, 783–790 (2020). https://doi.org/10.1134/s0031918x20080086

    Article  ADS  CAS  Google Scholar 

  17. A. N. Lubnin, G. A. Dorofeev, and V. I. Lad’yanov, “X-ray diffraction study of deformational evolution of stacking faults in nanocrystalline metals,” Phys. Met. Metallogr. 121, 1087–1096 (2020). https://doi.org/10.1134/s0031918x2011006x

    Article  ADS  CAS  Google Scholar 

  18. R. Wu, Q. Yin, J. Wang, Q. Mao, X. Zhang, and Z. Wen, “Effect of Re on mechanical properties of single crystal Ni-based superalloys: Insights from first-principle and molecular dynamics,” J. Alloys Compd. 862, 158643 (2021). https://doi.org/10.1016/j.jallcom.2021.158643

    Article  CAS  Google Scholar 

  19. Ye. Jiao, W. Dan, and W. Zhang, “Effects of hydrogen on the deformation mechanism of face-centred cubic Fe–C single crystal with nanovoid: A molecular dynamics simulation,” J. Alloys Compd. 870, 159330 (2021). https://doi.org/10.1016/j.jallcom.2021.159330

    Article  CAS  Google Scholar 

  20. Yu. Qi, T. He, H. Xu, Ya. Hu, M. Wang, and M. Feng, “Effects of microstructure and temperature on the mechanical properties of nanocrystalline CoCrFeMnNi high entropy alloy under nanoscratching using molecular dynamics simulation,” J. Alloys Compd. 871, 159516 (2021). https://doi.org/10.1016/j.jallcom.2021.159516

    Article  CAS  Google Scholar 

  21. J. Cho and C. T. Sun, “A molecular dynamics simulation study of inclusion size effect on polymeric nanocomposites,” Comput. Mater. Sci. 41, 54–62 (2007). https://doi.org/10.1016/j.commatsci.2007.03.001

    Article  Google Scholar 

  22. A. Rajput and S. K. Paul, “Effect of soft and hard inclusions in tensile deformation and damage mechanism of Aluminum: A molecular dynamics study,” J. Alloys Compd. 869, 159213 (2021). https://doi.org/10.1016/j.jallcom.2021.159213

    Article  CAS  Google Scholar 

  23. Yi. Wang, F. Wang, W. Yu, Yu. Wang, and Z. Qi, “Effects of MnS inclusions on mechanical behavior and damage mechanism of free-cutting steel: A molecular dynamics study,” J. Mol. Graphics Modell. 118, 108354 (2022). https://doi.org/10.1016/j.jmgm.2022.108354

    Article  CAS  Google Scholar 

  24. M. Wang, F. Wang, J. Zhang, H. Wang, Yi. Wang, and H. Wu, “Effects of h-BN additives on tensile mechanical behavior of Fe matrix: A molecular dynamics study,” Comput. Mater. Sci. 223, 112136 (2023). https://doi.org/10.1016/j.commatsci.2023.112136

    Article  CAS  Google Scholar 

  25. J. B. Jeon, B.-J. Lee, and Yo. W. Chang, “Molecular dynamics simulation study of the effect of grain size on the deformation behavior of nanocrystalline body-centered cubic iron,” Scr. Mater. 64, 494–497 (2011). https://doi.org/10.1016/j.scriptamat.2010.11.019

    Article  CAS  Google Scholar 

  26. R. Junqiang, Ya. Dan, W. Qi, L. Xuefeng, Z. Xudong, X. Hongtao, T. Fuling, and D. Yutian, “Effect of grain size and twin boundary spacing on plastic deformation of nano-polycrystalline Al alloy by molecular dynamics study,” Rare Met. Mater. Eng. 51, 2436–2445 (2022).

    Google Scholar 

  27. X. Tian, D. Li, Yo. Yu, Z. J. You, T. Li, and L. Ge, “Atomistic simulation study of deformation twinning of nanocrystalline body-centered cubic Mo,” Mater. Sci. Eng., A 690, 277–282 (2017). https://doi.org/10.1016/j.msea.2017.02.105

    Article  CAS  Google Scholar 

  28. M. I. Mendelev, S. Han, D. J. Srolovitz, G. J. Ackland, D. Y. Sun, and M. Asta, “Development of new interatomic potentials appropriate for crystalline and liquid iron,” Philos. Mag. 83, 3977–3994 (2003). https://doi.org/10.1080/14786430310001613264

    Article  ADS  CAS  Google Scholar 

  29. H. Zhou, D. E. Dickel, M. I. Baskes, S. Mun, and M. Asle Zaeem, “A modified embedded-atom method interatomic potential for bismuth,” Modell. Simul. Mater. Sci. Eng. 29, 065008 (2021). https://doi.org/10.1088/1361-651x/ac095c

    Article  ADS  CAS  Google Scholar 

  30. M. I. Baskes, “Modified embedded-atom potentials for cubic materials and impurities,” Phys. Rev. B 46, 2727–2742 (1992). https://doi.org/10.1103/physrevb.46.2727

    Article  ADS  CAS  Google Scholar 

  31. V. P. Filippova, S. A. Kunavin, and M. S. Pugachev, “Calculation of the parameters of the Lennard-Jones potential for pairs of identical atoms based on the properties of solid substances,” Inorg. Mater.: Appl. Res. 6, 1–4 (2015). https://doi.org/10.1134/s2075113315010062

    Article  Google Scholar 

  32. A. Arkundato, Z. Su’ud, M. Abdullah, and W. Sutrisno, “Molecular dynamic simulation on iron corrosion-reduction in high temperature molten lead-bismuth eutectic,” Turk. J. Phys. 37, 132–144 (2013). https://doi.org/10.3906/fiz-1112-12

    Article  CAS  Google Scholar 

  33. B. Xue, D. B. Harwood, J. L. Chen, and J. I. Siepmann, “Monte Carlo simulations of fluid phase equilibria and interfacial properties for water/alkane mixtures: An assessment of nonpolarizable water models and of departures from the Lorentz–Berthelot combining rules,” J. Chem. Eng. Data 63, 4256–4268 (2018). https://doi.org/10.1021/acs.jced.8b00757

    Article  CAS  Google Scholar 

  34. Yu. Wang, F. Wang, W. Yu, Yi. Wang, Z. Qi, and Yi. Wang, “Effects of pressure on volatilisation of pure Bi nanoparticles and Bi–Fe core–shell nanoparticles during continuous heating: a molecular dynamics study,” Mol. Phys. 120 (2022). https://doi.org/10.1080/00268976.2022.2121232

  35. H. Van Swygenhoven, A. Caro, and D. Farkas, “Grain boundary structure and its influence on plastic deformation of polycrystalline FCC metals at the nanoscale: A molecular dynamics study,” Scr. Mater. 44, 1513–1516 (2001). https://doi.org/10.1016/s1359-6462(01)00717-5

    Article  CAS  Google Scholar 

  36. P. Hirel, “Atomsk: A tool for manipulating and converting atomic data files,” Comput. Phys. Commun. 197, 212–219 (2015). https://doi.org/10.1016/j.cpc.2015.07.012

    Article  ADS  CAS  Google Scholar 

  37. S. Melchionna, G. Ciccotti, and B. Lee Holian, “Hoover NPT dynamics for systems varying in shape and size,” Mol. Phys. 78, 533–544 (1993). https://doi.org/10.1080/00268979300100371

    Article  ADS  CAS  Google Scholar 

  38. B. Frantzdale, S. J. Plimpton, and M. S. Shephard, “Software components for parallel multiscale simulation: an example with LAMMPS,” Eng. Comput. 26, 205–211 (2010). https://doi.org/10.1007/s00366-009-0156-z

    Article  Google Scholar 

  39. A. Stukowski, “Visualization and analysis of atomistic simulation data with OVITO–The open visualization tool,” Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010). https://doi.org/10.1088/0965-0393/18/1/015012

    Article  ADS  Google Scholar 

  40. F. C. Frank, “LXXXIII. Crystal dislocations.—Elementary concepts and definitions,” London, Edinburgh, Dublin Philos. Mag. J. Sci. 42, 809–819 (1951). https://doi.org/10.1080/14786445108561310

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Key Research and Development Projects of Shaanxi Province Project of Shaanxi Province, China (grant no. 2022GY-399).

Author information

Authors and Affiliations

Authors

Contributions

J.C. Zhang, M.G. Wang, and H.B. Wang, and are involved in the simulation, calculation, verification, and writing the paper work; Z. Chen visualized the post-processing; F.Z. Wang guided the writing; X.Y. Wang supervised the funding support.

Corresponding author

Correspondence to Fazhan Wang.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jingcheng Zhang, Wang, F., Wang, M. et al. Effects of Bi Inclusion on Tensile Mechanical Property and Deformation Mechanism of Nanopolycrystalline Fe: A Molecular Dynamics study. Phys. Metals Metallogr. 124, 1632–1643 (2023). https://doi.org/10.1134/S0031918X23601932

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X23601932

Keywords:

Navigation