Skip to main content
Log in

Interlayer Interaction and Coercivity of Three-Layer Films Obtained bу Chemical Deposition

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The results of experimental and theoretical studies of the coercivity and the dipole coupling field of the hysteresis loop on the thickness of the nonmagnetic interlayer in magnetic films, which are obtained via chemical deposition, are presented. Using model calculations based on the Landau–Ginzburg equations, the exchange interactions between magnetic layers with the participation of atoms from the nonmagnetic interlayer are studied. The resulting expression for the dipole coupling field describes well the exponential changes in the dipole coupling field as a function of the interlayer thickness in structures with both soft magnetic layers and layers with significantly different values of the coercivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, “Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange,” Phys. Rev. B 39, 4828–4830 (1989). https://doi.org/10.1103/physrevb.39.4828

    Article  CAS  Google Scholar 

  2. E. B. Myers, D. C. Ralph, J. A. Katine, R. N. Louie, and R. A. Buhrman, “Current-induced switching of domains in magnetic multilayer devices,” Science 285, 867–870 (1999). https://doi.org/10.1126/science.285.5429.867

    Article  CAS  Google Scholar 

  3. Y. Pennec, J. Camarero, J. C. Toussaint, S. Pizzini, M. Bonfim, F. Petroff, W. Kuch, F. Offi, K. Fukumoto, F. Nguyen Van Dau, and J. Vogel, “Switching-mode-dependent magnetic interlayer coupling strength in spin valves and magnetic tunnel junctions,” Phys. Rev. B 69, 180402–180403 (2004). https://doi.org/10.1103/physrevb.69.180402

    Article  Google Scholar 

  4. V. O. Vas’kovskii, P. A. Savin, V. N. Lepalovskii, G. S. Kandaurova, and Yu. M. Yarmoshenko, “Hysteretic properties and domain structure of the layered magnetic films,” Phys. Met. Metallogr. 79, 282–286 (1995).

    Google Scholar 

  5. V. O. Vas’kovskii and V. N. Lepalovskij, “Magnetization reversal features of Fe15Co20Ni65 sandwiches with various anisotropy of layers,” J. Phys. IV France 8, 441–444 (1998). https://doi.org/10.1051/jp4:19982103

    Article  Google Scholar 

  6. S. R. Herd and K. Y. Ahn, “Magnetic domain structures in multilayered NiFe films,” J. Appl. Phys. 50, 2384–2386 (1979). https://doi.org/10.1063/1.326960

    Article  CAS  Google Scholar 

  7. A. Gayen, K. Umadevi, A. Chelvane J, and P. Alagarsamy, “Tuning magnetic properties of thick CoFeB film by interlayer coupling in trilayer structured thin films,” J. Mater. Sci. Eng. 7, 1000437 (2018). https://doi.org/10.4172/2169-0022.1000437

    Article  CAS  Google Scholar 

  8. M. K. Kazimierczuk, High-Frequency Magnetic Components, 2nd ed. (John Wiley & Sons, 2014). https://doi.org/10.1002/9781118717806

    Book  Google Scholar 

  9. A. V. Chzhan, S. A. Podorozhnyak, A. N. Shahov, D. A. Velikanov, and G. S. Patrin, “Thickness dependences of coercivity in three layer films obtained by chemical deposition,” J. Phys.: Conf. Ser. 1389, 012118 (2019). https://doi.org/10.1088/1742-6596/1389/1/012118

    Article  CAS  Google Scholar 

  10. V. V. Bondar’, Electrochemistry-1966 (VINITI, Moscow, 1968).

  11. M. N. Volochaev, M. S. Shcheglova, Yu. Yu. Balashov, and Yu. Yu. Loginov, “Features of large-scale thin foils fabrication for transmission electron microscopy by focused ion beam,” IOP Conf. Ser.: Mater. Sci. Eng. 822, 012028 (2020). https://doi.org/10.1088/1757-899x/822/1/012028

  12. V. V. Polyakov, K. P. Polyakova, V. A. Seredkin, G. S. Patrin, and G. V. Bondarenko, “Magneto-optical properties of nanogranulated Co–Ti–O films,” Bull. Russ. Acad. Sci.: Phys. 75, 1106–1107 (2011). https://doi.org/10.3103/s1062873811080302

    Article  CAS  Google Scholar 

  13. L. Neel, “Sur un nouveau monde de couplage entre les aimantations de deux couches minces ferromagnétiques,” C. R. Acad. Sci. D 255, 1676–1681 (1962). https://hal.science/hal-02878443.

  14. D. Edwards, J. Mathon, and E. P. Wohlfarth, “A phenomenological theory of strongly paramagnetic and weakly ferromagnetic dilute alloys,” J. Phys. F: Met. Phys. 5, 1619–1624 (1975). https://doi.org/10.1088/0305-4608/5/8/020

    Article  CAS  Google Scholar 

  15. J. Mathon, “Magnetisation of a strongly paramagnetic layer in contact with a ferromagnetic substrate,” J. Phys. F: Met. Phys. 16, L217–L221 (1986). https://doi.org/10.1088/0305-4608/16/9/003

    Article  CAS  Google Scholar 

  16. B. D. Schrag, A. Anguelouch, S. Ingvarsson, G. Xiao, Yu. Lu, P. L. Trouilloud, A. Gupta, R. A. Wanner, W. J. Gallagher, P. M. Rice, and S. S. Parkin, “Néel ‘orange-peel’ coupling in magnetic tunneling junction devices,” Appl. Phys. Lett. 77, 2373–2375 (2000). https://doi.org/10.1063/1.1315633

    Article  CAS  Google Scholar 

  17. S. Tegen, I. Mönch, J. Schumann, H. Vinzelberg, and C. Schneider, “Effect of Néel coupling on magnetic tunnel junctions,” J. Appl. Phys. 89, 8169–8174 (2001). https://doi.org/10.1063/1.1365445

    Article  CAS  Google Scholar 

  18. A. V. Chzhan, S. A. Podorozhnyak, S. M. Zharkov, S. A. Gromilov, and G. S. Patrin, “Induced magnetic anisotropy of Co–P thin films obtained by electroless deposition,” J. Magn. Magn. Mater. 537, 168129 (2021). https://doi.org/10.1016/j.jmmm.2021.168129

    Article  CAS  Google Scholar 

  19. R. Skomski, T. Komesu, H.-K. Jeong, C. N. Borca, P. A. Dowben, D. Ristoiu, and J. P. Nozieres, “A Landau–Ginzburg description of Sb overlayers,” MRS Online Proc. Libr. 674, 710 (2001). https://doi.org/10.1557/proc-674-u7.10

    Article  Google Scholar 

  20. P. A. Dowben, W. W. Hürsch, and M. Landolt, “The experimentally determined thin-film limit to the Ginzburg–Landau model of thin-film magnetism,” J. Magn. Magn. Mater. 125, 120–124 (1993). https://doi.org/10.1016/0304-8853(93)90826-n

    Article  CAS  Google Scholar 

  21. I. I. Oleinik, E. Y. Tsymbal, and D. G. Pettifor, “Structural and electronic properties of Co/Al2O3/Co magnetic tunnel junction from first principles,” Phys. Rev. B 62, 3952–3959 (2000). https://doi.org/10.1103/physrevb.62.3952

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to S.Ya. Kiparisov for the provided samples.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Chzhan.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by A. Seferov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chzhan, A.V., Orlov, V.A. & Volochaev, M.N. Interlayer Interaction and Coercivity of Three-Layer Films Obtained bу Chemical Deposition. Phys. Metals Metallogr. 124, 961–965 (2023). https://doi.org/10.1134/S0031918X23601804

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X23601804

Keywords:

Navigation