Skip to main content
Log in

Phase Stability of Ni–(Co)–Mn–Z Heusler Alloys (Z = Ga, In, Sb, Sn)

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

First-principles studies on phase stability and resistance with respect to the segregation of austenitic and martensitic phases of Ni2 – xCoxMn1 + yZ1 – y Heusler alloys (x = 0, 0.25, 0.5 and y = 0, 0.25, 0.5, 0.75; Z = Ga, In, Sb, Sn) with different types of magnetic ordering. Among all the considered compounds, the stability has been demonstrated only by the Ni1.5Co0.5MnGa and Ni2MnGa alloys in the cubic and tetragonal structures having a ferromagnetic ordering, respectively, as well as by Ni2Mn2 in the tetragonal structure with a staggered and layer-by-layer AFM ordering. For the case of these compositions, the presence of zero energy of the convex hull, as well as the absence of reactions with positive decomposition energy has been shown. The remaining compounds appear to be metastable, both owing to the presence of stable reactions with negative decomposition energy, and decomposition reactions with positive decomposition energy. The number of decomposition reactions exhibits an increase with increasing chemical disorder, i.e., with deviations from stoichiometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. V. V. Khovaylo, K. P. Skokov, S. V. Taskaev, D. Yu. Karpenkov, E. T. Dilmieva, V. V. Koledov, Yu. S. Koshkid’ko, V. G. Shavrov, V. D. Buchelnikov, V. V. Sokolovskiy, I. Bobrovskij, A. Dyakonov, R. Chatterjee, and A. N. Vasiliev, “Magnetocaloric properties of Ni2 + xMn1 − xGa with coupled magnetostructural phase transition,” J. Appl. Phys. 127 (2020). https://doi.org/10.1063/5.0003327

  2. T. Kanomata, K. Shirakawa, and T. Kaneko, “Effect of hydrostatic pressure on the Curie temperature of the Heusler alloys Ni2MnZ (Z = Al, Ga, In, Sn and Sb),” J. Magn. Magn. Mater. 65, 76–82 (1987). https://doi.org/10.1016/0304-8853(87)90312-x

    Article  CAS  Google Scholar 

  3. V. V. Khovailo, V. A. Chernenko, A. A. Cherechukin, T. Takagi, and T. Abe, “An efficient control of Curie temperature TC in Ni–Mn–Ga alloys,” J. Magn. Magn. Mater. 272276, 2067–2068 (2004). https://doi.org/10.1016/j.jmmm.2003.12.836

    Article  CAS  Google Scholar 

  4. F. Albertini, S. Fabbrici, A. Paoluzi, J. Kamarad, Z. Arnold, L. Righi, M. Solzi, G. Porcari, C. Pernechele, D. Serrate, and P. Algarabel, “Reverse magnetostructural transitions by Co and In doping NiMnGa alloys: Structural, magnetic, and magnetoelastic properties,” Mater. Sci. Forum 684, 151–163 (2011). https://doi.org/10.4028/www.scientific.net/msf.684.151

  5. S. Fabbrici, F. Albertini, A. Paoluzi, F. Bolzoni, R. Cabassi, M. Solzi, L. Righi, and G. Calestani, “Reverse magnetostructural transformation in Co-doped NiMnGa multifunctional alloys,” Appl. Phys. Lett. 95, 22508 (2009). https://doi.org/10.1063/1.3179551

    Article  CAS  Google Scholar 

  6. S. Y. Yu, Z. X. Cao, L. Ma, G. D. Liu, J. L. Chen, G. H. Wu, B. Zhang, and X. X. Zhang, “Realization of magnetic field-induced reversible martensitic transformation in NiCoMnGa alloys,” Appl. Phys. Lett. 91, 102507 (2007). https://doi.org/10.1063/1.2783188

    Article  CAS  Google Scholar 

  7. L. Ma, H. W. Zhang, S. Y. Yu, Z. Y. Zhu, J. L. Chen, G. H. Wu, H. Y. Liu, J. P. Qu, and Y. X. Li, “Magnetic-field-induced martensitic transformation in MnNiGa:Co alloys,” Appl. Phys. Lett. 92 (2008). https://doi.org/10.1063/1.2838343

  8. V. V. Khovailo, T. Abe, V. V. Koledov, M. Matsumoto, H. Nakamura, R. Note, M. Ohtsuka, V. G. Shavrov, and T. Takagi, “Influence of Fe and Co on phase transitions in Ni–Mn–Ga alloys,” Mater. Trans. 44, 2509–2512 (2003). https://doi.org/10.2320/matertrans.44.2509

    Article  CAS  Google Scholar 

  9. Yu. Wang, C. Huang, J. Gao, S. Yang, X. Ding, X. Song, and X. Ren, “Evidence for ferromagnetic strain glass in Ni–Co–Mn–Ga Heusler alloy system,” Appl. Phys. Lett. 101, 101913 (2012). https://doi.org/10.1063/1.4751250

    Article  CAS  Google Scholar 

  10. W. M. Yuhasz, D. L. Schlagel, Q. Xing, K. W. Dennis, R. W. Mccallum, and T. A. Lograsso, “Influence of annealing and phase decomposition on the magnetostructural transitions in Ni50Mn39Sn11,” J. Appl. Phys. 105, 07A921 (2009). https://doi.org/10.1063/1.3067855

  11. T. Krenke, A. Çakır, F. Scheibel, M. Acet, and M. Farle, “Magnetic proximity effect and shell-ferromagnetism in metastable Ni50Mn45Ga5,” J. Appl. Phys. 120 (2016). https://doi.org/10.1063/1.4972480

  12. A. Çakır, M. Acet, and M. Farle, “Shell-ferromagnetism of nano-Heuslers generated by segregation under magnetic field,” Sci. Rep. 6, 28931 (2016). https://doi.org/10.1038/srep28931

    Article  CAS  Google Scholar 

  13. A. Çakır and M. Acet, “Shell-ferromagnetism in Ni–Mn-based Heuslers in view of ductile Ni–Mn–Al,” AIP Adv. 7 (2017). https://doi.org/10.1063/1.4975792

  14. A. Çakır, M. Acet, U. Wiedwald, T. Krenke, and M. Farle, “Shell-ferromagnetic precipitation in martensitic off-stoichiometric Ni–Mn–In Heusler alloys produced by temper-annealing under magnetic field,” Acta Mater. 127, 117–123 (2017). https://doi.org/10.1016/j.actamat.2017.01.027

    Article  CAS  Google Scholar 

  15. V. D. Buchelnikov, V. V. Sokolovskiy, O. N. Miroshkina, D. R. Baigutlin, and M. A. Zagrebin, “Phase transformations in Ni (Co)–Mn(Cr, C)–(In, Sn) alloys: An ab initio study,” Phys. Met. Metallogr. 121, 202–209 (2020). https://doi.org/10.1134/S0031918X20020039

    Article  CAS  Google Scholar 

  16. A. Grünebohm, H. C. Herper, and P. Entel, “On the rich magnetic phase diagram of (Ni, Co)–Mn–Sn Heusler alloys,” J. Phys. D: Appl. Phys. 49, 395001 (2016). https://doi.org/10.1088/0022-3727/49/39/395001

    Article  CAS  Google Scholar 

  17. J. Bai, J.-M. Raulot, Yu. Zhang, C. Esling, X. Zhao, and L. Zuo, “The effects of alloying element Co on Ni–Mn–Ga ferromagnetic shape memory alloys from first-principles calculations,” Appl. Phys. Lett. 98 (2011). https://doi.org/10.1063/1.3582239

  18. M. Zelený, A. Sozinov, L. Straka, T. Björkman, and R. M. Nieminen, “First-principles study of Co- and Cu-doped Ni2MnGa along the tetragonal deformation path,” Phys. Rev. B 89, 184103 (2014). https://doi.org/10.1103/PhysRevB.89.184103

    Article  CAS  Google Scholar 

  19. V. V. Sokolovskiy, M. E. Gruner, P. Entel, M. Acet, A. Çakır, D. R. Baigutlin, and V. D. Buchelnikov, “Segregation tendency of Heusler alloys,” Phys. Rev. Mater. 3, 84413 (2019). https://doi.org/10.1103/physrevmaterials.3.084413

    Article  CAS  Google Scholar 

  20. K. R. Erager, D. R. Baigutlin, V. V. Sokolovskiy, and V. D. Buchelnikov, “Exchange correlation effects in modulated martensitic structures of the Mn2NiGa alloy,” Phys. Met. Metallogr. 123, 375–380 (2022). https://doi.org/10.1134/s0031918x22040044

    Article  CAS  Google Scholar 

  21. K. R. Erager, V. V. Sokolovskiy, and V. D. Buchelnikov, “Ab initio study of the phase stability of modulated structures in Co-doped Ni–Mn–In (Sn) Heusler alloys,” IOP Conf. Ser.: Mater. Sci. Eng. 1213, 012008 (2022). https://doi.org/10.1088/1757-899x/1213/1/012008

  22. K. R. Erager, V. V. Sokolovskiy, and V. D. Buchelnikov, “First-principle studies of the tendency towards segregation in Heusler alloys Ni2Mn1 + xSb1 – x with different atomic ordering,” Phys. Solid State 63, 2028 (2021). https://doi.org/10.21883/PSS.2022.13.53976.11s

    Article  Google Scholar 

  23. G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169

    Article  CAS  Google Scholar 

  24. G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59, 1758–1775 (1999). https://doi.org/10.1103/physrevb.59.1758

    Article  CAS  Google Scholar 

  25. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865

    Article  CAS  Google Scholar 

  26. Siewert M, “New functional magnetic shape memory alloys from first-principles calculations,” PhD Thesis (University of Duisburg-Essen, 2012).

  27. A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. A. Persson, “Commentary: The Materials Project: A materials genome approach to accelerating materials innovation,” APL Mater. 1, 11002 (2013). https://doi.org/10.1063/1.4812323

    Article  CAS  Google Scholar 

  28. M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. Hart, and S. Curtarolo, “The AFLOW Library of Crystallographic Prototypes: Part 1,” Comput. Mater. Sci. 136, S1–S828 (2017). https://doi.org/10.1016/j.commatsci.2017.01.017

    Article  CAS  Google Scholar 

  29. D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. Hart, and S. Curtarolo, “The AFLOW Library of Crystallographic Prototypes: Part 2,” Comput. Mater. Sci. 161, S1–S1011 (2019). https://doi.org/10.1016/j.commatsci.2018.10.043

    Article  CAS  Google Scholar 

  30. D. Hicks, M. J. Mehl, M. Esters, C. Oses, O. Levy, G. L. W. Hart, C. Toher, and S. Curtarolo, “The AFLOW Library of Crystallographic Prototypes: Part 3,” Comput. Mater. Sci. 199, 110450 (2021). https://doi.org/10.1016/j.commatsci.2021.110450

    Article  CAS  Google Scholar 

Download references

Funding

The work was financial supported by the Ministry of Science and Higher Education of the Russian Federation in the scope of the State Order no. 075-01493-23-00 (Ni2 ‒ xCoxMn1 + yZ1 – y, Z = Ga, In structures) and by the Russian Science Foundation (project no. 22-19-00610 https://rscf.ru/project/22-19-00610/, Dagestan Federal Research Center of the Russian Academy of Sciences, Republic of Dagestan) (Ni2 – xCoxMn1 + yZ1 – y, Z = Sb, Sn structures Ni2 – xCoxMn1 + yZ1 – y, Z = Sb, Sn). K.R. Erager expresses sincere gratitude to the Foundation for Young Scientists Support of the Chechen State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Erager.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by O. Polyakov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erager, K.R., Sokolovskiy, V.V., Buchelnikov, V.D. et al. Phase Stability of Ni–(Co)–Mn–Z Heusler Alloys (Z = Ga, In, Sb, Sn). Phys. Metals Metallogr. 124, 1181–1188 (2023). https://doi.org/10.1134/S0031918X23601786

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X23601786

Keywords:

Navigation