Skip to main content
Log in

Effect of the Mechanical Activation Time on the Density of Fine-Grained 90W–7Ni–3Fe Alloy Synthesized by Spark Plasma Sintering

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The effect of the high-energy mechanical activation (HMA) time on the microstructure of heavy tungsten 90% W–7% Ni–3% Fe alloy (VNZh-90) and its solid-phase sintering kinetics was studied. Alloy specimens were manufactured by vacuum spark plasma sintering (SPS). It has been shown that the density of alloy VNZh-90 depends on the HMA time nonmonotonically with a minimum. It has been demonstrated that the kinetics of the SPS of mechanically activated nanopowders has a two-stage character; the sintering rate depends on the Coble creep rate and the diffusion rate of W atoms in the crystal lattice of the nickel based γ-phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. E. C. Green, D. J. Jones, and W. R. Pitkin, “Developments in high-density alloys,” in Proc. Symp. of Powder Metallurgy (1954), Vol. 58, pp. 253–256.

  2. K. B. Povarova, P. V. Makarov, E. K. Zavarzina, A. D. Ratner, and K. V. Volkov, “VNZh-90-type heavy alloys. I. Effect of alloying and the conditions of fabricating tungsten powders on their structure and the properties of sintered alloys,” Russ. Metall. (Met.), No. 4, 346–353 (2002).

  3. U. R. Kiran, A. S. Rao, M. Sankaranarayana, and T. Nandy, “Swaging and heat treatment studies on sintered 90W–6Ni–2Fe–2Co tungsten heavy alloy,” Int. J. Refract. Met. Hard Mater. 33, 113–121 (2012). https://doi.org/10.1016/j.ijrmhm.2012.03.003

    Article  CAS  Google Scholar 

  4. Ya. Yu, W. Zhang, Yu. Chen, and E. Wang, “Effect of swaging on microstructure and mechanical properties of liquid-phase sintered 93W–4.9(Ni, Co)–2.1Fe alloy,” Int. J. Refract. Met. Hard Mater. 44, 103–108 (2014). https://doi.org/10.1016/j.ijrmhm.2014.01.016

    Article  CAS  Google Scholar 

  5. M. Gryaznov, A. Samokhin, V. Chuvildeev, A. Fadeev, N. Alekseev, S. Shotin, A. Dorofeev, and I. Zavertyaev, “Method of W–Ni–Fe composite spherical powder production and the possibility of its application in selective laser melting technology,” Metals 12, 1715 (2022). https://doi.org/10.3390/met12101715

    Article  CAS  Google Scholar 

  6. C. Zhou, J. Yi, and S. Luo, “Sintering high tungsten content W–Ni–Fe heavy alloys by microwave radiation,” Metall. Mater. Trans. A 45, 455–463 (2014). https://doi.org/10.1007/s11661-013-1964-8

    Article  CAS  Google Scholar 

  7. P. V. Krasovskii, A. V. Samokhin, A. A. Fadeev, M. A. Sinayskiy, and S. K. Sigalaev, “Alloying effects and composition inhomogeneity of plasma-created multimetallic nanopowders: A case study of the W–Ni–Fe ternary system,” J. Alloys Compd. 750, 265–275 (2018). https://doi.org/10.1016/j.jallcom.2018.03.367

    Article  CAS  Google Scholar 

  8. E. A. Olevsky and D. V. Dudina, Field-Assisted Sintering (Springer, Cham, 2018). https://doi.org/10.1007/978-3-319-76032-2

    Book  Google Scholar 

  9. V. N. Chuvil’deev, A. V. Moskvicheva, A. V. Nokhrin, G. V. Baranov, Yu. V. Blagoveshchenskii, D. N. Kotkov, Yu. G. Lopatin, and V. Yu. Belov, “Ultrastrong nanodispersed tungsten pseudoalloys produced by high-energy milling and spark plasma sintering,” Dokl. Phys. 56, 109–113 (2011). https://doi.org/10.1134/S1028335811020017

    Article  CAS  Google Scholar 

  10. V. Chuvil’deev, A. Nokhrin, M. Boldin, N. Sakharov, G. Baranov, V. Yu. Belov, A. Popov, E. Lantsev, and E. Smirnova, “Influence of high-energy ball milling on the solid-phase sintering kinetics of ultrafine-grained heavy tungsten alloy,” Dokl. Phys. 62, 420–424 (2017). https://doi.org/10.1134/S1028335817090075

    Article  Google Scholar 

  11. W. S. Young and I. B. Cutler, “Initial sintering with constant rates of heating,” J. Am. Ceram. Soc. 53 (12), 659–663 (1970). https://doi.org/10.1111/j.1151-2916.1970.tb12036.x

    Article  CAS  Google Scholar 

  12. H. J. Frost and M. F. Ashby, Deformation-Mechanism Maps (The Plasticity and Creep of Metals and Ceramics) (Pergamon, Oxford, 1982).

    Google Scholar 

  13. Yu. R. Kolobov, G. P. Grabovetskaya, K. V. Ivanov, and N. V. Girsova, “Effect of the grain-boundary and grain size on the mechanisms of creep of submicrocrystalline nickel,” Phys. Met. Metallogr. 91, 532–537 (2001).

    Google Scholar 

  14. V. N. Chuvil’deev, M. S. Boldin, Ya. G. Dyatlova, V. I. Rumyantsev, and S. S. Ordanyan, “A comparative study of the hot pressing and spark plasma sintering of Al2O3–ZrO2–Ti(C,N) powders,” Inorg. Mater. 51, 1047–1053 (2015). https://doi.org/10.1134/S0020168515090034

    Article  CAS  Google Scholar 

  15. D. C. Blaine, S. J. Park, R. M. German, and P. Suri, “Application of work-of-sintering concepts in powder metals,” Metall. Mater. Trans. A 37 (9), 2827–2835 (2006). https://doi.org/10.1007/bf02586115

    Article  Google Scholar 

  16. S. J. Park, J. L. Johnson, Yu. Wu, Yo.-S. Kwon, S. Lee, and R. M. German, “Analysis of the effect of solubility on the densification behavior of tungsten heavy alloys using the master sintering curve approach,” Int. J. Refract. Met. Hard Mater. 37, 52–59 (2013). https://doi.org/10.1016/j.ijrmhm.2012.10.016

    Article  CAS  Google Scholar 

  17. K. Hu, X. Li, S. Qu, and Yu. Li, “Effect of heating rate on densification and grain growth during spark plasma sintering of 93W–5.6Ni–1.4Fe heavy alloys,” Metall. Mater. Trans. A 44, 4323–4336 (2013). https://doi.org/10.1007/s11661-013-1789-5

    Article  CAS  Google Scholar 

  18. L. N. Larikov and Yu. F. Yurchenko, Diffusion in Metals and Alloys (Naukova Dumka, Kiev, 1987).

    Google Scholar 

  19. S. J. Park, R. M. German, J. M. Martin, J. F. Guo, and J. L. Johnson, “Densification behavior of tungsten heavy alloy based on master sintering curve concept,” Metall. Mater. Trans. A 37, 2837–2848 (2006). https://doi.org/10.1007/bf02586116

    Article  Google Scholar 

  20. W. Seith, Diffusion in Mettallen: Platzwechselreaktionen, Reine und Angewandte Metallkunde in Einzeldarstellungen, Vol. 3 (Springer, Berlin, 1955). https://doi.org/10.1007/978-3-642-53297-9

  21. V. N. Chuvil’deev, Nonequilibrium Grain Boundaries in Metals: Theory and Applications (Fizmatlit, Moscow, 2004).

    Google Scholar 

  22. I. K. Razumov, A. Ye. Yermakov, Yu. N. Gornostyrev, and B. B. Straumal, “Nonequilibrium phase transformations in alloys under severe plastic deformation,” Phys.-Usp. 63, 733 (2020). https://doi.org/10.3367/UFNe.2019.10.038671

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Program “Priority-2030" of the Ministry of Science and Higher Education of Russia (grant no. N-498-99_2021-2023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Nokhrin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Glushachenkova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuvil’deev, V.N., Nokhrin, A.V., Boldin, M.S. et al. Effect of the Mechanical Activation Time on the Density of Fine-Grained 90W–7Ni–3Fe Alloy Synthesized by Spark Plasma Sintering. Phys. Metals Metallogr. 124, 987–994 (2023). https://doi.org/10.1134/S0031918X23601749

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X23601749

Keywords:

Navigation