Skip to main content
Log in

Use of Eutectic Effects in the Possible Creation of Phase-Change Memory Cells Based on Ag–Cu Nanoclusters

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

An attractive trend in the further progress of nanoelectronics is the development of a new generation of non-volatile memory devices, namely electric phase memory or PC-RAM (Phase Change Random Access Memory). However, there are a number of related unsolved problems, such as the stability of the amorphous phase, high power consumption, long information storage time, etc. In order to solve these problems, a new approach has been proposed, which consists in using Ag–Cu binary alloy nanoparticles as PC-RAM cells. To this end, the molecular dynamics method was used to study the processes of structuring these alloy nanoparticles (NPs) with a size of D = 2–10 nm of different compositions when the heat energy removal rate was varied. The stability criteria of the amorphous and crystalline structure were evaluated and conclusions were drawn about the target composition and size of NPs, suitable for the fabrication of phase change memory cells. It has been shown that using binary Ag–Cu alloy NPs, it is possible to reduce the size of a single cell to 6–8 nm and the information recording time to 2.5 ns and, for the first time, based on the eutectic approach, to achieve the stability of the amorphous and crystalline structure at different rates of heat energy removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. R. O. Jones, “Phase change memory materials: Rationalizing the dominance of Ge/Sb/Te alloys,” Phys. Rev. B 101, 24103 (2020). https://doi.org/10.1103/physrevb.101.024103

    Article  CAS  Google Scholar 

  2. M. Le Gallo and A. Sebastian, “An overview of phase-change memory device physics,” J. Phys. D: Appl. Phys. 53, 213002 (2020). https://doi.org/10.1088/1361-6463/ab7794

    Article  CAS  Google Scholar 

  3. P. I. Lazarenko, S. A. Kozyukhin, A. A. Sherchenkov, A. V. Babich, S. P. Timoshenkov, D. G. Gromov, A. V. Zabolotskaya, and V. V. Kozik, “Electrophysical properties of Ge–Sb–Te thin films for phase change memory devices,” Russ. Phys. J. 59, 1417–1424 (2016). https://doi.org/10.1007/s11182-017-0925-x

    Article  CAS  Google Scholar 

  4. G. Navarro, G. Bourgeois, J. Kluge, A. Serra, A. Verdy, J. Garrione, M. Cyrille, N. Bernier, A. Jannaud, C. Sabbione, M. Bernard, E. Nolot, F. Fillot, P. Noe, L. Fellouh, G. Rodriguez, V. Beugin, O. Cueto, N. Castellani, J. Coignus, V. Delaye, C. Socquet-Clerc, T. Magis, C. Boixaderas, S. Barnola, and E. Nowak, “Phase-change memory: Performance, roles and challenges,” in 2018 IEEE International Memory Workshop (IMW), Kyoto, Japan, 2018 (IEEE, 2018). https://doi.org/10.1109/imw.2018.8388845

  5. K. Aryana, J. T. Gaskins, J. Nag, D. A. Stewart, Zh. Bai, S. Mukhopadhyay, J. C. Read, D. H. Olson, E. R. Hoglund, J. M. Howe, A. Giri, M. K. Grobis, and P. E. Hopkins, “Interface controlled thermal resistances of ultra-thin chalcogenide-based phase change memory devices,” Nat. Commun. 12, 774 (2021). https://doi.org/10.1038/s41467-020-20661-8

    Article  CAS  Google Scholar 

  6. Yu. Liu, X. Li, H. Zheng, N. Chen, X. Wang, X. Zhang, H. Sun, and Sh. Zhang, “High-throughput screening for phase-change memory materials,” Adv. Funct. Mater. 31, 2009803 (2021). https://doi.org/10.1002/adfm.202009803

    Article  CAS  Google Scholar 

  7. M. Xu, C. Qiao, K.-H. Xue, H. Tong, X. Cheng, S. Wang, C.-Zh. Wang, K.-M. Ho, M. Xu, and X. Miao, “Polyamorphism in K2Sb8Se13 for multi-level phase-change memory,” J. Mater. Chem. C 8, 6364–6369 (2020). https://doi.org/10.1039/d0tc01089h

    Article  CAS  Google Scholar 

  8. G. Mazzone, V. Rosato, M. Pintore, F. Delogu, P. F. Demontis, and G. B. Suffritti, “Molecular-dynamics calculations of thermodynamic properties of metastable alloys,” Phys. Rev. B 55, 837–842 (1997). https://doi.org/10.1103/physrevb.55.837

    Article  CAS  Google Scholar 

  9. “XMakemol–A program for visualizing atomic and molecular systems,” https://kujss.iraqjournals.com/pdf_166170_8dd024058ce4abb6c364bec514cecef8.html.

  10. A. Stukowski, “Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool,” Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010). https://doi.org/10.1088/0965-0393/18/1/015012

    Article  Google Scholar 

  11. T. Pang, An Introduction to Computational Physics (Cambridge Univ. Press, Cambridge, 2006). https://doi.org/10.1017/cbo9780511800870

    Book  Google Scholar 

  12. J. Tominaga, A. V. Kolobov, P. J. Fons, X. Wang, Yu. Saito, T. Nakano, M. Hase, S. Murakami, J. Herfort, and Yu. Takagaki, “Giant multiferroic effects in topological GeTe–Sb2Te3 superlattices,” Sci. Technol. Adv. Mater. 16, 014402 (2015). https://doi.org/10.1088/1468-6996/16/1/014402

    Article  CAS  Google Scholar 

  13. L. V. Redel’, S. L. Gafner, Yu. Ya. Gafner, I. S. Zamulin, and Zh. V. Goloven’ko, “Analysis of the applicability of Ni, Cu, Au, Pt, and Pd nanoclusters for data recording,” Phys. Solid State 59, 413–422 (2017). https://doi.org/10.1134/s1063783417020238

    Article  Google Scholar 

  14. D. A. Bashkova, Yu. Gafner, Ya, S. Gafner, and L. V. Redel’, “Application of silver nanoparticles as cells of phase-varied memory,”, Fundam. Probl. Sovrem. Materialoved. (2018).

    Google Scholar 

  15. E. Panizon, D. Bochicchio, G. Rossi, and R. Ferrando, “Tuning the structure of nanoparticles by small concentrations of impurities,” Chem. Mater. 26, 3354–3356 (2014). https://doi.org/10.1021/cm501001f

    Article  CAS  Google Scholar 

  16. S. V. Dubkov, A. I. Savitskiy, A. Yu. Trifonov, G. S. Yeritsyan, Yu. P. Shaman, E. P. Kitsyuk, A. Tarasov, O. Shtyka, R. Ciesielski, and D. S. Gromov, “SERS in red spectrum region through array of Ag–Cu composite nanoparticles formed by vacuum-thermal evaporation,” Opt. Mater.: X 7, 100055 (2020). https://doi.org/10.1016/j.omx.2020.100055

    Article  CAS  Google Scholar 

Download references

Funding

The research was carried out under Grant No. 23-29-10011 of the Russian Science Foundation, https://rscf.ru/project/23-29-10011/ with equal financial support from the Government of the Republic of Khakassia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. Ya. Gafner.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by Z. Mesarkishvili

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryzhkova, D.A., Gafner, S.L. & Gafner, Y.Y. Use of Eutectic Effects in the Possible Creation of Phase-Change Memory Cells Based on Ag–Cu Nanoclusters. Phys. Metals Metallogr. 124, 1041–1048 (2023). https://doi.org/10.1134/S0031918X23601634

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X23601634

Keywords:

Navigation