Skip to main content
Log in

The Effect of Grit Blasting on Surface Roughness and Hardness of Magnesium Alloy AZ31B: A Statistical Study

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Magnesium alloys are known for their lightweight and high specific strength properties and being used as bio-degradable implant material. Materials’ surface roughness and surface hardness play a major role when coating has to be applied and may subject to wear and abrasion. Grit blasting is one of the common techniques to remove surface impurities, corrosion products and modify the surface characteristics for better adhesion of protective coatings, as well as, surface hardness. In the present study, the effect of grit blasting media and blasting pressure on the surface characteristics and surface hardness of magnesium alloy is investigated. The surface characteristics such as mean surface roughness (Ra), highest peak values (Rp), deepest valley values (Rv) are measured using atomic force microscopy (AFM) and show a linear relation with blasting pressure. The surface topography is observed using scanning electron microscopy (SEM). The surface hardness results indicate 41% increase in hardness with blasting pressure. The statistical findings using analysis of variance (ANOVA) shows that both blasting pressure and blasting media contribute to final surface roughness and surface hardness. The blasting pressure imparts major contribution to it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.

Similar content being viewed by others

REFERENCES

  1. G. E. J. Poinern, S. Brundavanam, and D. Fawcett, “Biomedical magnesium alloys: a review of material properties, surface modifications and potential as a biodegradable orthopaedic implant,” Am. J. Biomed. Eng. 2, 218–240 (2012). https://doi.org/10.5923/j.ajbe.20120206.02

    Article  Google Scholar 

  2. S. Agarwal, J. Curtin, B. Duffy, and S. Jaiswal, “Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications,” Mater. Sci. Eng., C 68, 948–963 (2016). https://doi.org/10.1016/j.msec.2016.06.020

    Article  CAS  Google Scholar 

  3. A. Francis, Y. Yang, S. Virtanen, and A. Boccaccini, “Iron and iron-based alloys for temporary cardiovascular applications,” J. Mater. Sci.: Mater. Med. 26, 138 (2015). https://doi.org/10.1007/s10856-015-5473-8

    Article  CAS  PubMed  Google Scholar 

  4. P. Wen, M. Voshage, L. Jauer, Ya. Chen, Yu. Qin, R. Poprawe, and J. Schleifenbaum, “Laser additive manufacturing of Zn metal parts for biodegradable applications: Processing, formation quality and mechanical properties,” Mater. Des. 155, 36–45 (2018). https://doi.org/10.1016/j.matdes.2018.05.057

    Article  CAS  Google Scholar 

  5. D. Xue, Ye. Yun, Z. Tan, Z. Dong, and M. Schulz, “In vivo and in vitro degradation behavior of magnesium alloys as biomaterials,” J. Mater. Sci. Technol. 28, 261–267 (2012). https://doi.org/10.1016/s1005-0302(12)60051-6

    Article  CAS  Google Scholar 

  6. R. Walter and M. B. Kannan, “Influence of surface roughness on the corrosion behaviour of magnesium alloy,” Mater. Des. 32, 2350–2354 (2011). https://doi.org/10.1016/j.matdes.2010.12.016

    Article  CAS  Google Scholar 

  7. S. Agarwal, J. Curtin, B. Duffy, and S. Jaiswal, “Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications,” Mater. Sci. Eng., C 68, 948–963 (2016). https://doi.org/10.1016/j.msec.2016.06.020

    Article  CAS  Google Scholar 

  8. A. E. Coy, F. Viejo, F. J. Garcia-Garcia, Z. Liu, P. Skeldon, and G. E. Thompson, “Effect of excimer laser surface melting on the microstructure and corrosion performance of the die cast AZ91D magnesium alloy,” Corros. Sci. 52, 387–397 (2010). https://doi.org/10.1016/j.corsci.2009.09.025

    Article  CAS  Google Scholar 

  9. A. Pandey, A. Awasthi, and K. K. Saxena, “Metallic implants with properties and latest production techniques: A review,” Adv. Mater. Process. Technol. 6, 405–440 (2020). https://doi.org/10.1080/2374068x.2020.1731236

    Article  Google Scholar 

  10. A. Raykowski, M. Hader, B. Maragno, and J. Spelt, “Blast cleaning of gas turbine components: Deposit removal and substrate deformation,” Wear 249, 126–131 (2001). https://doi.org/10.1016/s0043-1648(01)00518-x

    Article  Google Scholar 

  11. R. K. Chintapalli, A. Mestra Rodriguez, F. Garcia Marro, and M. Anglada, “Effect of sandblasting and residual stress on strength of zirconia for restorative dentistry applications,” J. Mech. Behav. Biomed. Mater. 29, 126–137 (2014). https://doi.org/10.1016/j.jmbbm.2013.09.004

    Article  CAS  PubMed  Google Scholar 

  12. R. K. Chintapalli, F. G. Marro, E. Jimenez-Pique, and M. Anglada, “Phase transformation and subsurface damage in 3Y-TZP after sandblasting,” Dental Mater. 29, 566–572 (2013). https://doi.org/10.1016/j.dental.2013.03.005

    Article  CAS  Google Scholar 

  13. M. S. Islam, L. Tong, and P. J. Falzon, “Influence of metal surface preparation on its surface profile, contact angle, surface energy and adhesion with glass fibre prepreg,” Int. J. Adhes. Adhes. 51, 32–41 (2014). https://doi.org/10.1016/j.ijadhadh.2014.02.006

    Article  CAS  Google Scholar 

  14. E. Avcu, S. Fidan, Y. Yıldıran, and T. Sınmazçelik, “Solid particle erosion behaviour of Ti6Al4V alloy,” Tribol. Mater., Surf. Interfaces 7, 201–210 (2013). https://doi.org/10.1179/1751584x13y.0000000043

    Article  CAS  Google Scholar 

  15. K. Bobzin, M. Öte, T. Linke, J. Sommer, and X. Liao, “Influence of process parameter on grit blasting as a pretreatment process for thermal spraying,” J. Therm. Spray Technol. 25, 3–11 (2016). https://doi.org/10.1007/s11666-015-0297-0

    Article  ADS  Google Scholar 

  16. H. F. Li, Y. B. Wang, Y. F. Zheng, and J. P. Lin, “Osteoblast response on Ti- and Zr-based bulk metallic glass surfaces after sand blasting modification,” J. Biomed. Mater. Res. Part B: Appl. Biomater. 100B, 1721–1728 (2012). https://doi.org/10.1002/jbm.b.32738

    Article  CAS  Google Scholar 

  17. D. Randman, “Deformation mechanisms in magnesium alloy ElektronTM 675,” PhD Thesis (Department of Engineering Materials, The University of Sheffield, Sheffield, 2010).

  18. M. Zhao and K. T. Ramesh, “Deformation and failure mechanisms in a magnesium alloy under uniaxial compressive loading,” J. Dynamic Behav. Mater. 6, 303–316 (2020). https://doi.org/10.1007/s40870-020-00246-8

    Article  ADS  Google Scholar 

  19. D. Hull and D. J. Bacon, Introduction to Dislocations, 4th ed. (Butterworth-Heinemann, Oxford, 2001). https://doi.org/10.1016/B978-0-7506-4681-9.X5000-7

    Book  Google Scholar 

  20. M. R. Barnett, “Twinning and the ductility of magnesium alloys,” Mater. Sci. Eng., A 464, 8–16 (2007). https://doi.org/10.1016/j.msea.2007.02.109

    Article  CAS  Google Scholar 

  21. Q. Yu, J. Wang, Ya. Jiang, R. J. McCabe, N. Li, and C. N. Tomé, “Twin–twin interactions in magnesium,” Acta Mater. 77, 28–42 (2014). https://doi.org/10.1016/j.actamat.2014.05.030

    Article  CAS  ADS  Google Scholar 

  22. Y. Chun and C. Davies, “Texture effects on development of shear bands in rolled AZ31 alloy,” Mater. Sci. Eng., A 556, 253–259 (2012). https://doi.org/10.1016/j.msea.2012.06.083

    Article  CAS  Google Scholar 

  23. J. Marteau, M. Bigerelle, P.-E. Mazeran, and S. Bouvier, “Relation between roughness and processing conditions of AISI 316L stainless steel treated by ultrasonic shot peening,” Tribol. Int. 82, 319–329 (2015). https://doi.org/10.1016/j.triboint.2014.07.013

    Article  CAS  Google Scholar 

  24. K. Tosha, “Influence of residual stresses on the hardness number in the affected layer produced by shot peening,” in 2nd Asia-Pacific Forum on Precision Surface Finishing and Deburring Technology, Seoul, Korea, 2002 (2002), pp. 48–54.

  25. K. Iida and K. Tosha, “Behavior of surface residual stress induced by shot peening (II),” in Advances in Surface Treatments, Ed. by A. Niku-Lari (Pergamon, 1987), pp. 139–144. https://doi.org/10.1016/b978-0-08-034923-7.50021-8

    Book  Google Scholar 

  26. C. E. Peñuela-Cruz, A. Márquez-Herrera, E. Aguilera-Gómez, A. Saldaña-Robles, R. Mis-Fernández, J. L. Peña, F. Caballero-Briones, M. Loeza-Poot, and E. Hernández-Rodríguez, “The effects of sandblasting on the surface properties of magnesium sheets: A statistical study,” J. Mater. Res. Technol. 23, 1321–1331 (2023). https://doi.org/10.1016/j.jmrt.2023.01.117

    Article  CAS  Google Scholar 

  27. G. A. Gamal, F. A. Al-Mufadi, M. Salah, M. Salman, and H. Zein, “The relationship of surface roughness and hardness of BiSn solder alloys due to the variation of sn content,” Int. J. Sci. Eng. Res. 6 (7), 103–109 (2018).

    Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. U. Manzoor.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, F., Manzoor, M.U., Kamran, M. et al. The Effect of Grit Blasting on Surface Roughness and Hardness of Magnesium Alloy AZ31B: A Statistical Study. Phys. Metals Metallogr. 124, 1620–1631 (2023). https://doi.org/10.1134/S0031918X23601506

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X23601506

Keywords:

Navigation