Skip to main content
Log in

Effect of Ni on the Contributions of Superplastic Deformation Mechanisms in an Al–Zn–Mg–Cr Alloy

  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript


The influence of nickel on superplasticity characteristics, microstructure evolution and the contribution of acting superplastic deformation mechanisms in the Al–Zn–Mg–Cr based alloys has been studied. In the Al–Zn–Mg–Cr alloy, dispersoids with an average size of 140 nm containing aluminum, chromium, magnesium, and a small amount of zinc are precipitated. In the Al–Zn–Mg–Cr–Ni alloy, additionally an Al3Ni phase has formed. Nickel aluminide provides a more homogeneous and stable grain structure at elevated annealing temperatures and during superplastic deformation at 440°C. An alloying with Ni reduced the average grain size from 7.7 to 7.3 μm before deformation and from 10 to 8.6 μm after straining to 0.69. An increased dislocation density has been found near the Al3Ni particles after deformation. At comparable values of the strain rate sensitivity coefficient (m ≈ 0.6), the presence of Al3Ni particles results in a higher contribution of GBS, and a lower contribution of intragranular dislocation slip, as compared to the alloy without these particles. The alloying with Ni provided a more equiaxed fine-grained structure and an increase in elongations-to-failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.


  1. J. J. Blandin, “Superplasticity of metallic alloys: Some current findings and open questions,” Mater. Sci. Forum 838839, 13–22 (2016).

  2. T. G. Langdon, “Seventy-five years of superplasticity: Historic developments and new opportunities,” J. Mater. Sci. 44, 5998–6010 (2009).

    Article  CAS  Google Scholar 

  3. X.-G. Wang, Q.-Sh. Li, R.-R. Wu, X.-Yu. Zhang, and L. Ma, “A review on superplastic formation behavior of Al alloys,” Adv. Mater. Sci. Eng. 2018, 7606140 (2018).

    Article  CAS  Google Scholar 

  4. T. G. Langdon, “Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement,” Acta Mater. 61, 7035–7059 (2013).

    Article  CAS  Google Scholar 

  5. I. I. Novikov and V. K. Portnoj, Superplastizität von Legierungen (Springer, Vienna, 1985).

    Book  Google Scholar 

  6. H. Jin, “Optimization of aluminum alloy AA5083 for superplastic and quick plastic forming,” Metall. Mater. Trans. A 50, 3868–3890 (2019).

    Article  CAS  Google Scholar 

  7. A. H. Chokshi, “Grain boundary processes in strengthening, weakening, and superplasticity,” Adv. Eng. Mater. 22, 1900748 (2020).

    Article  CAS  Google Scholar 

  8. T. Wang, J. Hu, L.-X. Du, G.-Sh. Sun, and R. D. K. Misra, “Strain rate and temperature dependence of low temperature superplastic deformation in a nanostructured microalloyed steel,” Mater. Lett. 243, 165–168 (2019).

    Article  CAS  Google Scholar 

  9. G. Giuliano, Superplastic Forming of Advanced Metallic Materials (Woodhead Publishing, 2011).

    Book  Google Scholar 

  10. D. Y. Hwang, K. Kwon, D. H. Shin, K. T. Park, Yo. G. Ko, and C. S. Lee, “Superplastic behavior of ultrafine grained Al alloys fabricated by severe plastic deformation,” Key Eng. Mater. 345346, 597–600 (2007).

  11. V. P. Poida, D. E. Pedun, V. V. Bryukhovetskii, A. V. Poida, R. V. Sukhov, A. L. Samsonik, and V. V. Litvinenko, “Structural changes during superplastic deformation of high-strength alloy 1933 of the Al–Mg–Zn–Cu–Zr system,” Phys. Met. Metallogr. 114, 779–788 (2013).

    Article  Google Scholar 

  12. A. D. Kotov, A. V. Mikhaylovskaya, and V. K. Portnoy, “Effect of the solid-solution composition on the superplasticity characteristics of Al–Zn–Mg–Cu–Ni–Zr alloys,” Phys. Met. Metallogr. 115, 730–735 (2014).

    Article  Google Scholar 

  13. A. D. Kotov, A. V. Mikhailovskaya, and V. K. Portnoy, “Superplasticity of alloy Al–11% Zn–3% Mg–0.8% Cu–0.3% Zr with Fe and Ni additives,” Met. Sci. Heat Treat. 55, 364–367 (2013).

    Article  CAS  Google Scholar 

  14. O. A. Yakovtseva, A. D. Kotov, M. N. Sitkina, A. V. Irzhak, and A. V. Mikhaylovskaya, “Mechanisms of superplastic high-rate deformation in the Al–Mg–Zn–Fe–Ni–Zr–Sc alloy,” Phys. Met. Metallogr. 120, 1014–1020 (2019).

    Article  CAS  Google Scholar 

  15. O. A. Yakovtseva, M. N. Sitkina, A. D. Kotov, O. V. Rofman, and A. V. Mikhaylovskaya, “Experimental study of the superplastic deformation mechanisms of high-strength aluminum-based alloy,” Mater. Sci. Eng., A 788, 139639 (2020).

    Article  CAS  Google Scholar 

  16. O. Yakovtseva, A. Tomas, and A. Mikhaylovskaya, “Surface and internal structural markers for studying grain boundary sliding and grain rotation,” Mater. Lett. 268, 127569 (2020).

    Article  CAS  Google Scholar 

  17. A. V. Mikhaylovskaya, O. A. Yakovtseva, M. N. Sitkina, A. D. Kotov, A. V. Irzhak, S. V. Krymskiy, and V. K. Portnoy, “Comparison between superplastic deformation mechanisms at primary and steady stages of the fine grain AA7475 aluminium alloy,” Mater. Sci. Eng., A 718, 277–286 (2018).

    Article  CAS  Google Scholar 

  18. A. D. Kotov, A. V. Mikhaylovskaya, A. A. Borisov, O. A. Yakovtseva, and V. K. Portnoy, “High-strain-rate superplasticity of the Al–Zn–Mg–Cu alloys with Fe and Ni additions,” Phys. Met. Metallogr. 118, 913–921 (2017).

    Article  CAS  Google Scholar 

  19. T. K. Akopyan, N. A. Belov, A. S. Aleshchenko, S. P. Galkin, Y. V. Gamin, M. V. Gorshenkov, V. V. Cheverikin, and P. K. Shurkin, “Formation of the gradient microstructure of a new Al alloy based on the Al–Zn–Mg–Fe–Ni system processed by radial-shear rolling,” Mater. Sci. Eng., A 746, 134–144 (2019).

    Article  CAS  Google Scholar 

  20. I. G. Shirinkina and I. G. Brodova, “Annealing-induced structural–phase transformations in an Al–Zn–Mg–Fe–Ni alloy after high pressure torsion,” Phys. Met. Metallogr. 121, 344–351 (2020).

    Article  CAS  Google Scholar 

  21. N. A. Belov, V. D. Belov, V. V. Cheverikin, and S. S. Mishurov, “Sparingly alloyed high-strength deformed nickel-aluminum alloys of new generation,” Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall. 20 (1–2), 49–58 (2011).

    Google Scholar 

  22. I. Brodova, D. Rasposienko, I. Shirinkina, A. Petrova, T. Akopyan, and E. Bobruk, “Effect of severe plastic deformation on structure refinement and mechanical properties of the Al–Zn–Mg–Fe–Ni alloy,” Metals 11, 296 (2021).

    Article  CAS  Google Scholar 

  23. V. K. Portnoy and I. I. Novikov, “Evaluation of grain boundary sliding contribution to the total strain during superplastic deformation,” Scr. Mater. 40, 39–43 (1998).

    Article  Google Scholar 

  24. A. V. Mikhaylovskaya, O. A. Yakovtseva, and A. V. Irzhak, “The role of grain boundary sliding and intragranular deformation mechanisms for a steady stage of superplastic flow for Al–Mg-based alloys,” Mater. Sci. Eng., A 833, 142524 (2022).

    Article  CAS  Google Scholar 

  25. C. Mondal and A. K. Mukhopadhyay, “On the nature of T(Al2Mg3Zn3) and S(Al2CuMg) phases present in as-cast and annealed 7055 aluminum alloy,” Mater. Sci. Eng., A 391, 367–376 (2005).

    Article  CAS  Google Scholar 

  26. F.-G. Cong, G. Zhao, F. Jiang, N. Tian, and R. Li, “Effect of homogenization treatment on microstructure and mechanical properties of DC cast 7X50 aluminum alloy,” Trans. Nonferrous Met. Soc. China 25, 1027–1034 (2015).

    Article  CAS  Google Scholar 

  27. Yo. Zhao, H. Li, Yu. Liu, and Yu. Huang, “The microstructures and mechanical properties of a highly alloyed Al–Zn–Mg–Cu alloy: The role of Cu concentration,” J. Mater. Res. Technol. 18, 122–137 (2022).

    Article  CAS  Google Scholar 

  28. X. L. Xiao, H. W. Liu, W. L. Chen, and Yi. M. Lin, “Morphology of dispersoids in an annealed Al–Mg alloys,” Mater. Sci. Forum 1035, 72–82 (2021).

  29. S. Sripathi and K. A. Padmanabhan, “Universality of the phenomenology of structural superplasticity,” Mater. Sci. Forum 838839, 84–88 (2016).

  30. S. Lv, C. Jia, X. He, Z. Wan, X. Li, and X. Qu, “Superplastic deformation and dynamic recrystallization of a novel disc superalloy GH4151,” Materials 12, 3667 (2019).

    Article  CAS  Google Scholar 

  31. M. K. Rabinovich and V. G. Trifonov, “Dynamic grain growth during superplastic deformation,” Acta Mater. 44, 2073–2078 (1996).

    Article  CAS  Google Scholar 

  32. P. S. Bate, K. B. Hyde, S. A. Court, and J. F. Humphreys, “Dynamic grain growth in superplastic and non-superplastic aluminium alloys,” Mater. Sci. Forum 447448, 61–66 (2004).

  33. U. Messerschmidt and M. Bartsch, “Generation of dislocations during plastic deformation,” Mater. Chem. Phys. 81, 518–523 (2003).

    Article  CAS  Google Scholar 

  34. C. L. Chen and M. J. Tan, “Effect of grain boundary character distribution (GBCD) on the cavitation behaviour during superplastic deformation of Al 7475,” Mater. Sci. Eng., A 338, 243–252 (2002).

    Article  Google Scholar 

  35. A. V. Mikhaylovskaya, O. A. Yakovtseva, A. G. Mochugovskiy, J. Cifre, and I. S. Golovin, “Influence of minor Zn additions on grain boundary anelasticity, grain boundary sliding, and superplasticity of Al–Mg-based alloys,” J. Alloys Compd. 926, 166785 (2022).

    Article  CAS  Google Scholar 

  36. M. A. Rust and R. I. Todd, “Surface studies of region II superplasticity of AA5083 in shear: Confirmation of diffusion creep, grain neighbour switching and absence of dislocation activity,” Acta Mater. 59, 5159–5170 (2011).

    Article  CAS  Google Scholar 

  37. K. Sotoudeh and P. S. Bate, “Diffusion creep and superplasticity in aluminium alloys,” Acta Mater. 58, 1909–1920 (2010).

    Article  CAS  Google Scholar 

  38. R. I. Todd, “Critical review of mechanism of superplastic deformation in fine grained metallic materials,” Mater. Sci. Technol. 16, 1287–1294 (2000).

    Article  CAS  Google Scholar 

Download references


TEM was performed at the Center for Collective Use of MISIS “Materials Science and Metallurgy”.


This work was supported by the Russian Federation President Grant for supporting leading scientific schools NSh-1752.2022.4.

The Center for Collective Use of MISIS “Materials Science and Metallurgy” was equipped using the project of the State task of the Russian Federation for the purchase of equipment no. 075-15-2021-696.

Author information

Authors and Affiliations


Corresponding author

Correspondence to O. A. Yakovtseva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by T. Gapontseva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovtseva, O.A., Postnikova, M.N., Irzhak, A.V. et al. Effect of Ni on the Contributions of Superplastic Deformation Mechanisms in an Al–Zn–Mg–Cr Alloy. Phys. Metals Metallogr. 124, 944–954 (2023).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: