Skip to main content
Log in

Preparation and Properties of Magnetic Composites γ-Fe2O3/SiO2/Aptamer(FAS9) for Magnetic Resonance Hyperthermia

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Powders of maghemite γ-Fe2O3 with an average diameter of 8 nm, γ-Fe2O3/SiO2 composites with an agglomerate diameter of about 50 nm and a size of interspersed γ-Fe2O3 particles of 6 nm, and γ‑Fe2O3/SiO2/aptamer(FAS9) composites were synthesized by chemical deposition. Mössbauer spectra were measured, the static and dynamic magnetic properties of the powders were studied, and the coercive force was determined, which decreases from 14 Oe for γ-Fe2O3 powders to 3 Oe for the γ-Fe2O3/SiO2 composite. It is shown that the particle blocking temperature is close to room temperature. The increment of temperature of the powders was measured in the ferromagnetic resonance mode; the temperature of the Fe2O3/SiO2 composite (ΔT ≈ 16°C) turned out to be higher than that of the pure γ-Fe2O3 powder (ΔT ≈ 10°C). It has been experimentally shown that temperature increment ΔT is proportional to the square of the microwave field amplitude. It has been shown that the composition γ-Fe2O3/SiO2/aptamer FAS9 is able to effectively bind to tumor cells, and FMR hyperthermia leads to a decrease in the viability of tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. L. M. Rossi, N. J. S. Costa, F. P. Silva, and R. V. Gonçalves, “Magnetic nanocatalysts: Supported metal nanoparticles for catalytic applications,” Nanotechnol. Rev. 2, 597–614 (2013). https://doi.org/10.1515/ntrev-2013-0021

    Article  CAS  Google Scholar 

  2. T. D. Dongale, S. S. Khot, A. A. Patil, S. V. Wagh, P. B. Patil, D. P. Dubal, and T. G. Kim, “Bifunctional nanoparticulated nickel ferrite thin films: Resistive memory and aqueous battery applications,” Mater. Des. 201, 109493 (2021). https://doi.org/10.1016/j.matdes.2021.109493

    Article  CAS  Google Scholar 

  3. T. V. Drokina, Physical Methods in Medicine (Krasnoyarsk. Gos. Univ., Krasnoyarsk, 2005).

    Google Scholar 

  4. H. Bass, J. L. Moore, and W. T. Coakley, “Lethality in mammalian cells due to hyperthermia under oxic and hypoxic conditions,” Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med. 33, 57–67 (1978). https://doi.org/10.1080/09553007714551491

    Article  CAS  PubMed  Google Scholar 

  5. S. Rotundo, D. Brizi, A. Flori, G. Giovannetti, L. Menichetti, and A. Monorchio, “Shaping and focusing magnetic field in the human body: State-of-the art and promising technologies,” Sensors 22, 5132 (2022). https://doi.org/10.3390/s22145132

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  6. D. Walton, S. Snape, T. C. Rolph, J. Shaw, and J. Share, “Application of ferrimagnetic resonance heating to palaeointensity determinations,” Phys. Earth Planet. Inter. 94, 183–186 (1996). https://doi.org/10.1016/0031-9201(95)03094-8

    Article  ADS  Google Scholar 

  7. J. Lee, Yo. Kim, and S. Kim, “Highly efficient heat-dissipation power driven by ferromagnetic resonance in MFe2O4 (M = Fe, Mn, Ni) ferrite nanoparticles,” Sci. Rep. 12, 5232 (2022). https://doi.org/10.1038/s41598-022-09159-z

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  8. M. Peiravi, H. Eslami, M. Ansari, and H. Zare-Zardini, “Magnetic hyperthermia: Potentials and limitations,” J. Indian Chem. Soc. 99, 100269 (2022). https://doi.org/10.1016/j.jics.2021.100269

    Article  CAS  Google Scholar 

  9. S. Krupička, Physik der Ferrite und der Verwandten Magnetischen Oxide (Vieweg+Teubner Verlag, Wiesbaden, 1973). https://doi.org/10.1007/978-3-322-83522-2

  10. S. V. Stolyar, O. A. Li, E. D. Nikolaeva, N. M. Boev, A. M. Vorotynov, D. A. Velikanov, R. S. Iskhakov, V. F. Knyazev, Yu. V. Bayukov, O. A. Shokhrina, A. O. Molokeev, M. S. Vasiliev, and A D, “Heating of magnetic powders in the ferromagnetic resonance mode at a frequency of 8.9 GHz,” Phys. Solid State 65, 963 (2023).

    Article  Google Scholar 

  11. S. V. Stolyar, O. A. Li, E. D. Nikolaeva, A. M. Vorotynov, D. A. Velikanov, Yu. V. Knyazev, O. A. Bayukov, R. S. Iskhakov, V. F. P’yankov, and M. N. Volochaev, “An effective method of magnetic hyperthermia based on the ferromagnetic resonance phenomenon,” Phys. Met. Metallogr. 124, 174–180 (2023). https://doi.org/10.1134/s0031918x22601834

    Article  ADS  CAS  Google Scholar 

  12. B. Herrero De La Parte, I. Rodrigo, J. Gutiérrez-Basoa, S. Iturrizaga Correcher, C. Mar Medina, J. J. Echevarría-Uraga, J. A. Garcia, F. Plazaola, and I. García-Alonso, “Proposal of new safety limits for in vivo experiments of magnetic hyperthermia antitumor therapy,” Cancers 14, 3084 (2022). https://doi.org/10.3390/cancers14133084

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. J. Lee, B. Kim, Yo. Kim, and S. Kim, “Ultra-high rate of temperature increment from superparamagnetic nanoparticles for highly efficient hyperthermia,” Sci. Rep. 11, 4969 (2021). https://doi.org/10.1038/s41598-021-84424-1

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  14. N. Suttie, J. Shaw, and M. J. Hill, “Direct demonstration of microwave demagnetization of a whole rock sample with minimal heating,” Earth Planet. Sci. Lett. 292, 357–362 (2010). https://doi.org/10.1016/j.epsl.2010.02.002

    Article  ADS  CAS  Google Scholar 

  15. N. Yoshikawa and T. Kato, “Ferromagnetic resonance heating of Fe and Fe3O4 by 5.8 GHz microwave irradiation,” J. Phys. D: Appl. Phys. 43, 425403 (2010). https://doi.org/10.1088/0022-3727/43/42/425403

    Article  ADS  CAS  Google Scholar 

  16. I. Khmelinskii and V. I. Makarov, “EPR hyperthermia of S. cerevisiae using superparamagnetic Fe3O4 nanoparticles,” J. Therm. Biol. 77, 55–61 (2018). https://doi.org/10.1016/j.jtherbio.2018.08.004

    Article  CAS  PubMed  Google Scholar 

  17. S. Bae, S. W. Lee, and Y. Takemura, “Applications of NiFe2O4 nanoparticles for a hyperthermia agent in biomedicine,” Appl. Phys. Lett. 89, 252503 (2006). https://doi.org/10.1063/1.2420769

    Article  ADS  CAS  Google Scholar 

  18. K. Ohara, T. Moriwaki, K. Nakazawa, T. Sakamoto, K. Nii, M. Abe, and Y. Ichiyanagi, “Development of biocompatible Ni-ferrite nanoparticles with PEG-coated for magnetic hyperthermia,” AIP Adv. 13 (2023). https://doi.org/10.1063/9.0000477

  19. W. Wu, Z. Wu, T. Yu, C. Jiang, and W. Kim, “Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications,” Sci. Technol. Adv. Mater. 16, 023501 (2015). https://doi.org/10.1088/1468-6996/16/2/023501

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. M. Shen, H. Cai, X. Wang, X. Cao, K. Li, S. H. Wang, R. Guo, L. Zheng, G. Zhang, and X. Shi, “Facile one-pot preparation, surface functionalization, and toxicity assay of APTS-coated iron oxide nanoparticles,” Nanotechnology 23, 105601 (2012). https://doi.org/10.1088/0957-4484/23/10/105601

    Article  ADS  CAS  PubMed  Google Scholar 

  21. A. D. Ellington and J. W. Szostak, “In vitro selection of RNA molecules that bind specific ligands,” Nature 346, 818–822 (1990). https://doi.org/10.1038/346818a0

    Article  ADS  CAS  PubMed  Google Scholar 

  22. C. Tuerk and L. Gold, “Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase,” Science 249, 505–510 (1979). https://doi.org/10.1126/science.2200121

    Article  ADS  Google Scholar 

  23. P. D. Kim, S. S. Zamay, T. N. Zamay, V. S. Prokopenko, O. S. Kolovskaya, G. S. Zamay, V. Ya. Princ, V. A. Seleznev, A. I. Komonov, E. A. Spivak, R. Yu. Rudenko, A. V. Dubinina, A. V. Komarov, V. V. Denisenko, M. A. Komarova, A. E. Sokolov, A. A. Narodov, V. P. Zjivaev, and A. S. Zamay, “The antitumor effect of magnetic nanodisks and DNA aptamer conjugates,” Dokl. Biochem. Biophys. 466, 66–69 (2016). https://doi.org/10.1134/s1607672916010154

    Article  CAS  PubMed  Google Scholar 

  24. S. V. Stolyar, E. D. Nikolaeva, O. A. Li, D. A. Velikanov, A. M. Vorotynov, V F, V. P. Ladygina, A. S. Sukhachev, D. A. Balaev, and R. S. Iskhakov, “Microwave heating of iron powders in the ferromagnetic resonance mode,” Materialovedenie, No. 9, 10–14 (2023).

    Google Scholar 

  25. O. S. Kolovskaya, T. N. Zamay, A. S. Zamay, Yu. E. Glazyrin, E. A. Spivak, O. A. Zubkova, A. V. Kadkina, E. N. Erkaev, G. S. Zamay, A. G. Savitskaya, L. V. Trufanova, L. L. Petrova, and M. V. Berezovski, “DNA-aptamer/protein interaction as a cause of apoptosis and arrest of proliferation in Ehrlich ascites adenocarcinoma cells,” Biochem. (Moscow), Suppl. Ser. A: Membrane Cell Biol. 8, 60–72 (2013). https://doi.org/10.1134/s1990747813050061

    Article  Google Scholar 

  26. M. Ozaslan, I. D. Karagoz, I. H. Kilic, and M. E. Guldur, “Ehrlich ascites carcinoma,” Afr. J. Biotechnol. 10, 2375–2378 (2011).

    Google Scholar 

  27. S. V. Salikhov, A. G. Savchenko, I. S. Grebennikov, and E. V. Yurtov, “Phase composition and structure of iron oxide nanopowders prepared by chemical means,” Bull. Russ. Acad. Sci.: Phys. 79, 1106–1112 (2015). https://doi.org/10.3103/s1062873815090166

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We express our gratitude to the Krasnoyarsk Regional Center for Collective Use of the FRC KSC SB RAS for the equipment provided.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Stolyar.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stolyar, S.V., Li, O.A., Nikolaeva, E.D. et al. Preparation and Properties of Magnetic Composites γ-Fe2O3/SiO2/Aptamer(FAS9) for Magnetic Resonance Hyperthermia. Phys. Metals Metallogr. 124, 1689–1696 (2023). https://doi.org/10.1134/S0031918X23601439

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X23601439

Keywords:

Navigation