Skip to main content
Log in

Auger Electron Spectroscopy of Thin Cr2GeC Films

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Auger electron spectroscopy was used to determine the phase composition of Cr2GeC MAX phase thin films. A distinctive feature of the formation of carbon-containing MAX phases is the shape of carbon Auger peaks, which is characteristic of metal carbides spectra. Features of the Auger spectra in the presence of secondary phases of chromium germanides are found. Their presence can manifest itself in an increase in the energy of the germanium peaks, which is caused by a chemical shift during the formation of the Cr–Ge bond. Moreover, we have detected the accumulation of electronic charge, which can be explained by the features of the surface morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. D. J. Tallman, B. Anasori, and M. W. Barsoum, “A critical review of the oxidation of Ti2AlC, Ti2AlC2 and Cr2AlC in air,” Mater. Res. Lett. 1, 115–125 (2013). https://doi.org/10.1080/21663831.2013.806364

    Article  CAS  Google Scholar 

  2. D. Yu and Yo. Tan, “Oxidation behaviors of compositionally complex MAX phases in air,” Ceram. Int. 47, 30188–30193 (2021). https://doi.org/10.1016/j.ceramint.2021.07.198

    Article  CAS  Google Scholar 

  3. T. S. Mathis, K. Maleski, A. Goad, A. Sarycheva, M. Anayee, A. C. Foucher, K. Hantanasirisakul, C. E. Shuck, E. A. Stach, and Yu. Gogotsi, “Modified MAX phase synthesis for environmentally stable and highly conductive Ti2C2 MXene,” ACS Nano 15, 6420–6429 (2021). https://doi.org/10.1021/acsnano.0c08357

    Article  CAS  Google Scholar 

  4. A. D. Bortolozo, O. H. Sant’Anna, C. A. M. dos Santos, and A. J. S. Machado, “Superconductivity at 9.5 K in the Ti2GeC compound,” Mater. Sci.-Poland 30, 92–97 (2012). https://doi.org/10.2478/s13536-012-0013-4

    Article  ADS  CAS  Google Scholar 

  5. Z. Babar, J. Fatheema, N. Arif, M. S. Anwar, S. Gul, M. Iqbal, and S. Rizwan, “Magnetic phase transition from paramagnetic in Nb2AlC-MAX to superconductivity-like diamagnetic in Nb2C-MXene: An experimental and computational analysis,” (2020).

  6. A. S. Ingason, M. Dahlqvist, and J. Rosen, “Magnetic MAX phases from theory and experiments; a review,” J. Phys.: Condens. Matter 28, 433003 (2016). https://doi.org/10.1088/0953-8984/28/43/433003

    Article  ADS  CAS  Google Scholar 

  7. J. Yang, G. Yao, S. Sun, Z. Chen, S. Yuan, K. Wu, X. Fu, Q. Wang, and W. Cui, “Structural, magnetic properties of in-plane chemically ordered (Mo2/3R1/3)2AlC (R = Gd, Tb, Dy, Ho, Er and Y) MAX phase and enhanced capacitance of Mo1.33C MXene derivatives,” Carbon 179, 104–110 (2021). https://doi.org/10.1016/j.carbon.2021.03.062

    Article  CAS  Google Scholar 

  8. J. Dey, E. Jedryka, R. Kalvig, U. Wiedwald, M. Farle, J. Rosen, and M. Wójcik, “Helical magnetic structure of epitaxial films of nanolaminated Mn2GaC MAX phase,” Phys. Rev. B 108, 54413 (2023). https://doi.org/10.1103/physrevb.108.054413

    Article  ADS  CAS  Google Scholar 

  9. A. S. Ingason, A. Mockute, M. Dahlqvist, F. Magnus, S. Olafsson, U. B. Arnalds, B. Alling, I. A. Abrikosov, B. Hjörvarsson, P. O. Å. Persson, and J. Rosen, “Magnetic self-organized atomic laminate from first principles and thin film synthesis,” Phys. Rev. Lett. 110, 195502 (2013). https://doi.org/10.1103/physrevlett.110.195502

    Article  ADS  CAS  Google Scholar 

  10. Z. Liu, T. Waki, Y. Tabata, and H. Nakamura, “Mn-doping-induced itinerant-electron ferromagnetism in Cr2GeC,” Phys. Rev. B 89, 54435 (2014). https://doi.org/10.1103/physrevb.89.054435

    Article  ADS  Google Scholar 

  11. S. Lin, Ya. Huang, L. Zu, X. Kan, J. Lin, W. Song, P. Tong, X. Zhu, and Yu. Sun, “Alloying effects on structural, magnetic, and electrical/thermal transport properties in MAX-phase Cr2 − xMxGeC (M = Ti, V, Mn, Fe, and Mo),” J. Alloys Compd. 680, 452–461 (2016). https://doi.org/10.1016/j.jallcom.2016.04.197

    Article  CAS  Google Scholar 

  12. D. Briggs and M. P. Seah, Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy (John Wiley & Sons, Chichester, 1983).

    Google Scholar 

  13. A. S. Tarasov, S. A. Lyaschenko, M. V. Rautskii, A. V. Lukyanenko, T. A. Andryushchenko, L. A. Solovyov, I. A. Yakovlev, O. A. Maximova, D. V. Shevtsov, M. A. Bondarev, I. A. Bondarev, S. G. Ovchinnikov, and S. N. Varnakov, “Growth process, structure and electronic properties of Cr2GeC and Cr2 – xMnxGeC thin films prepared by magnetron sputtering,” Processes 11, 2236 (2023). https://doi.org/10.3390/pr11082236

    Article  CAS  Google Scholar 

  14. T. A. Andryushchenko, S. A. Lyaschenko, A. V. Lukyanenko, S. N. Varnakov, and S. G. Ovchinnikov, “Auger electron spectroscopy of the air exposed (Cr0.5Mn0.5)2GaC MAX film surface,” PJTF 49 (14), 22–27 (2023). https://doi.org/10.21883/PJTF.2023.14.55821.19430

    Article  Google Scholar 

  15. M. A. Smith and L. L. Levenson, “Final-state effects in carbon Auger spectra of transition-metal carbides,” Phys. Rev. B 16, 1365–1369 (1977). https://doi.org/10.1103/physrevb.16.1365

    Article  ADS  CAS  Google Scholar 

  16. S. Danyluk, J. Yu. Park, and D. E. Busch, “Auger electron spectroscopy of stoichiometric chromium carbides and carbide precipitates at grain boundaries of type 304 stainless steel,” Scr. Metall. 13, 857–862 (1979). https://doi.org/10.1016/0036-9748(79)90174-1

    Article  CAS  Google Scholar 

  17. T. W. Haas, J. T. Grant, and G. J. Dooley, “Chemical effects in Auger electron spectroscopy,” J. Appl. Phys. 43, 1853–1860 (1972). https://doi.org/10.1063/1.1661409

    Article  ADS  CAS  Google Scholar 

  18. C. C. Chang, “Auger electron spectroscopy,” Surf. Sci. 25, 53–79 (1971). https://doi.org/10.1016/0039-6028(71)90210-x

    Article  ADS  CAS  Google Scholar 

  19. M. W. Ruckman, M. Del Giudice, J. J. Joyce, and J. H. Weaver, “Comparative study of the formation of Cr/Ge and Ge/Cr thin-film interfaces,” Phys. Rev. B 33, 8039–8047 (1986). https://doi.org/10.1103/physrevb.33.8039

    Article  ADS  CAS  Google Scholar 

  20. P. Sander, M. Altebockwinkel, W. Storm, L. Wiedmann, and A. Benninghoven, “Surface and in-depth analysis of hydrogenated carbon layers on silicon and germanium by mass and electron spectroscopy,” J. Vac. Sci. Technol. B: Microelectron. Process. Phenom. 7, 517–528 (1989). https://doi.org/10.1116/1.584778

    Article  ADS  CAS  Google Scholar 

  21. P. J. Møller and J. He, “Electron beam induced charging of Cu/MgO surfaces,” Nucl. Instrum. Methods Phys. Res., Sect. B: Beam Interact. Mater. Atoms 17, 137–140 (1986). https://doi.org/10.1016/0168-583x(86)90075-3

    Article  Google Scholar 

  22. J. Cazaux, K. H. Kim, O. Jbara, and G. Salace, “Charging effects of MgO under electron bombardment and nonohmic behavior of the induced specimen current,” J. Appl. Phys. 70, 960–965 (1991). https://doi.org/10.1063/1.349606

    Article  ADS  CAS  Google Scholar 

  23. C. C. Chang, Characterization of Solid Surfaces (Plenum Press, New York, 1974).

    Google Scholar 

  24. H. Guo, W. Maus-Friedrichs, and V. Kempter, “Charging phenomena and charge compensation in AES on metal oxides and silica,” Surf. Interface Anal. 25, 390–396 (1997). https://doi.org/10.1002/(sici)1096-9918(199706)25:6<390::aid-sia247>3.0.co;2-x

    Article  Google Scholar 

  25. P. Eklund, M. Bugnet, V. Mauchamp, S. Dubois, C. Tromas, J. Jensen, L. Piraux, L. Gence, M. Jaouen, and T. Cabioc’h, “Epitaxial growth and electrical transport properties of Cr2GeC thin films,” Phys. Rev. B 84, 75424 (2011). https://doi.org/10.1103/physrevb.84.075424

    Article  ADS  Google Scholar 

  26. N. Lundberg, M. Östling, and F. M. D’Heurle, “Chromium germanides: Formation, structure and properties,” Appl. Surf. Sci. 53, 126–131 (1991). https://doi.org/10.1016/0169-4332(91)90252-f

    Article  ADS  CAS  Google Scholar 

  27. T. Chihi, M. Fatmi, and M. A. Ghebouli, “Ab initio study of some fundamental properties of the M3X (M = Cr, V; X = Si, Ge) compounds,” Phys. B: Condens. Matter 407, 3591–3595 (2012). https://doi.org/10.1016/j.physb.2012.05.032

    Article  ADS  CAS  Google Scholar 

  28. R. M. Hill, “Electrical conduction in ultra thin metal films I. Theoretical,” Proc. R. Soc. London A: Math. Phys. Sci. 309, 377–395 (1969). https://doi.org/10.1098/rspa.1969.0048

    Article  ADS  CAS  Google Scholar 

  29. E. V. Vashchenko, I. A. Gladskikh, S. G. Przhibel’skiĭ, V. V. Khromov, and T. A. Vartanyan, “Conductivity and photoconductivity of granular silver films on a sapphire substrate,” J. Opt. Technol. 80, 263 (2013). https://doi.org/10.1364/jot.80.000263

    Article  CAS  Google Scholar 

  30. S. Hofmann, “Charging and charge compensation in AES analysis of insulators,” J. Electron Spectrosc. Relat. Phenom. 59, 15–32 (1992). https://doi.org/10.1016/0368-2048(92)85009-v

    Article  CAS  Google Scholar 

  31. C. G. H. Walker, M. M. El-gomati, A. M. D. Assa’d, and M. Zadražil, “The secondary electron emission yield for 24 solid elements excited by primary electrons in the range 250–5000 eV: A theory/experiment comparison,” Scanning 30, 365–380 (2008). https://doi.org/10.1002/sca.20124

    Article  CAS  Google Scholar 

  32. H. H. Madden, “Chemical information from Auger electron spectroscopy,” J. Vac. Sci. Technol. 18, 677–689 (1981). https://doi.org/10.1116/1.570927

    Article  ADS  CAS  Google Scholar 

  33. J.-W. Park, “Sample charging of insulators with rough surfaces during Auger electron spectroscopy analysis,” J. Vac. Sci. Technol. A: Vac., Surf., Films 15, 292–293 (1997). https://doi.org/10.1116/1.580527

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the Krasnoyarsk Regional Center of Research Equipment of Federal Research Center “Krasnoyarsk Science Center SB RAS” for obtaining the AFM data, X-ray diffraction patterns, scanning electron micrographs and L. A. Solovyov for the help in processing the XRD data.

Funding

The research was supported by the Russian Science Foundation (grant no. 21-12-00226, http://rscf.ru/project/21-12-00226/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Andryushchenko.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andryushchenko, T.A., Lyaschenko, S.A., Varnakov, S.N. et al. Auger Electron Spectroscopy of Thin Cr2GeC Films. Phys. Metals Metallogr. 124, 1776–1782 (2023). https://doi.org/10.1134/S0031918X2360135X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X2360135X

Keywords:

Navigation