Skip to main content
Log in

On the Morphology Variation of Graphite in Ductile Cast Iron through Severe Plastic Deformation

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

For decades, researchers have been concerned about the formability of manufactured wrought cast iron, with brittleness being a major issue in these alloys. To address this, the ferrite phase has been identified as a suitable matrix for cast iron deformation due to its ability to provide satisfactory ductility and avoid brittle limitations. In this study, machined parts of ductile cast iron were subjected to an annealing process at approximately 900°C for 1 h before undergoing hot plastic deformation with varying degrees of reduction. The deformation was carried out using a cylinder-covered hot compression (CCC or CCHC) technique. The primary objective of this study is to gain a microscopic understanding of hot plastically deformed ductile cast iron and propose a mathematically formulated flow strain that takes into account the contributions of the microstructure’s constituent phases. This analysis aims to provide a comprehensive characterization of deformed graphite within the microstructure. Optical microscopy (OM) and scanning electron microscopy (SEM) were employed to obtain results for the characterization. The findings revealed that as the reduction increased, spheroidal graphite tended to transform into a lamellar structure, resulting in diverse properties. Additionally, a microhardness test was conducted to assess the variation in mechanical properties throughout each deformation step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. J. G. Lenard and M. E. Davies, “An experimental study of heat transfer in metal-forming processes,” CIRP Ann. 41, 307–310 (1992). https://doi.org/10.1016/s0007-8506(07)61210-4

    Article  Google Scholar 

  2. Y. Estrin and A. Vinogradov, “Extreme grain refinement by severe plastic deformation: A wealth of challenging science,” Acta Mater. 61, 782–817 (2013). https://doi.org/10.1016/j.actamat.2012.10.038

    Article  ADS  CAS  Google Scholar 

  3. S. V. Divinski, K. A. Padmanabhan, and G. Wilde, “Microstructure evolution during severe plastic deformation,” Philos. Mag. 91, 4574–4593 (2011). https://doi.org/10.1080/14786435.2011.615349

    Article  ADS  CAS  Google Scholar 

  4. A. Azushima, R. Kopp, A. Korhonen, D. Y. Yang, F. Micari, G. D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, and A. Yanagida, “Severe plastic deformation (SPD) processes for metals,” CIRP Ann. 57, 716–735 (2008). https://doi.org/10.1016/j.cirp.2008.09.005

    Article  Google Scholar 

  5. “Census of World Casting Production: Global Casting Production Growth Stalls,” Mod. Casting Mag. 109, 24–25 (2019).

  6. “Census of World Casting Production: Global Casting Production Growth Stalls,” Mod. Casting Mag. 109, 26–27 (2019).

  7. J. Shi, S. Zou, and R. W. Smith, “Effect of elongated graphite on mechanical properties of hot-rolled ductile iron,” JMEP 3, 657–663 (1994). https://doi.org/10.4236/msa.2019.106032

    Article  ADS  CAS  Google Scholar 

  8. Z. R. He, G. X. Lin, and S. Ji, “Deformation and fracture of cast iron with an optimized microstructure,” Mater. Charact. 38, 251–258 (1997). https://doi.org/10.1016/s1044-5803(97)00080-6

    Article  CAS  Google Scholar 

  9. T. El-Bitar and E. El-Banna, “Contribution of forming parameters on the properties of hot rolled ductile cast iron alloys,” Mater. Lett. 31, 145–150 (1997). https://doi.org/10.1016/s0167-577x(96)00254-6

    Article  CAS  Google Scholar 

  10. V. Di Cocco, F. Lacoviello, and M. Cavallini, “Damaging micromechanisms characterization of a ferritic ductile cast iron,” Eng. Fract. Mech. 77, 2016–2023 (2010). https://doi.org/10.1016/j.engfracmech.2010.03.037

    Article  Google Scholar 

  11. J. A. Rehder, “Specification for wrought iron rolled or forged blooms and forgings,” Iron Age 168, 229–233 (1951). https://doi.org/10.1520/a0073-66

    Article  Google Scholar 

  12. M. Soliman, A. Nofal, and H. Palkowski, “Alloy and process design of thermo-mechanically processed multiphase ductile iron,” Mater. Des. 87, 450–465 (2015). https://doi.org/10.1016/j.matdes.2015.07.159

    Article  CAS  Google Scholar 

  13. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J. J. Jonas, “Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions,” Prog. Mater. Sci. 60, 130–207 (2014). https://doi.org/10.1016/j.pmatsci.2013.09.002

    Article  CAS  Google Scholar 

  14. H. J. Mcqueen, “Development of dynamic recrystallization theory,” Mater. Sci. Eng., A 387-389, 203–208 (2014). https://doi.org/10.1016/j.msea.2004.01.064

    Article  CAS  Google Scholar 

  15. K. C. Le and D. M. Kochmann, “A simple model for dynamic recrystallization during severe plastic deformation,” Arch. Appl. Mech. 79, 579–586 (2009). https://doi.org/10.1007/s00419-008-0280-z

    Article  ADS  Google Scholar 

  16. E. Bagherpour, N. Pardis, M. Reihanian, and R. Ebrahimi, “An overview on severe plastic deformation: Research status, techniques classification, microstructure evolution, and applications,” Int. J. Adv. Manuf. Technol. 100, 1647–1694 (2019). https://doi.org/10.1007/s00170-018-2652-z

    Article  Google Scholar 

  17. M. Faisal, E. El-Shenawy, and M. A. Taha, “Effect of deformation parameters on microstructural evolution of GGG 40 spheroidal graphite cast iron alloy,” Mater. Sci. Appl. 10, 433–450 (2019). https://doi.org/10.4236/msa.2019.106032

    Article  CAS  Google Scholar 

  18. I. Hervas, M. B. Bettaieb, A. Thuault, and E. Hug, “Graphite nodule morphology as an indicator of the local complex strain state in ductile cast iron,” Mater. Des. 52, 524–532 (2013). https://doi.org/10.1016/j.matdes.2013.05.078

    Article  CAS  Google Scholar 

  19. I. Hervas, A. Thuault, and E. Hug, “Damage analysis of a ferritic SiMo ductile cast iron submitted to tension and compression loadings in temperature,” Metals 5, 2351–2369 (2019). https://doi.org/10.3390/met5042351

    Article  Google Scholar 

  20. X. Zhao, X. Yang, and T. Jing, “Processing maps for use in hot working of ductile iron,” J. Iron Steel Res. Int. 18 (4), 48–51 (2011). https://doi.org/10.1016/s1006-706x(11)60049-6

    Article  Google Scholar 

  21. K. Qi, F. Yu, F. Bai, Z. Yan, Z. Wang, and T. Li, “Research on the hot deformation behavior and graphite morphology of spheroidal graphite cast iron at high strain rate,” Mater. Des. 30, 4511–4515 (2009). https://doi.org/10.1016/j.matdes.2009.05.019

    Article  CAS  Google Scholar 

  22. X. Zhao, T. F. Jing, Y. W. Gao, J. F. Zhou, and W. Wang, “A new SPD process for spheroidal cast iron,” Mater. Lett. 58, 2335–2339 (2004). https://doi.org/10.1016/j.matlet.2004.01.034

    Article  CAS  Google Scholar 

  23. X. Zhao, J. Wang, and T. Jing, “Gray cast iron with directional graphite flakes produced by cylinder covered compression process,” J. Iron Steel Res. Int. 14 (5), 52–55 (2007). https://doi.org/10.1016/s1006-706x(07)60074-0

    Article  Google Scholar 

  24. W. Wei, T. Jing, Y. Gao, G. Qiao, and X. Zhao, “Properties of a gray cast iron with oriented graphite flakes,” J. Mater. Process. Technol. 182, 593–597 (2007). https://doi.org/10.1016/j.jmatprotec.2006.09.028

    Article  CAS  Google Scholar 

  25. A. Ghahremaninezhad and K. Ravi-Chandar, “Deformation and failure in nodular cast iron,” Acta Mater. 60, 2359–2368 (2012). https://doi.org/10.1016/j.actamat.2011.12.037

    Article  ADS  CAS  Google Scholar 

  26. ASTM E351, Standard Test Methods for Chemical Analysis of Cast Iron-All Types. https://doi.org/10.1520/e0351-18

  27. ASTM A536, Standard Specification for Ductile Iron Castings. https://doi.org/10.1520/a0536-84r19e01

  28. N. Haghdadi, B. Bazaz, H. R. Erfanian-Naziftoosi, and A. R. Kiani-Rashid, “Microstructural and mechanical characteristics of Al-alloyed ductile iron upon casting and annealing,” Int. J. Miner., Metall., Mater. 19, 812–820 (2012). https://doi.org/10.1007/s12613-012-0633-z

    Article  CAS  Google Scholar 

  29. A. Shayesteh-Zeraati, H. Naser-Zoshki, and A. R. Kiani-Rashid, “Microstructural and mechanical properties (hardness) investigations of Al-alloyed ductile cast iron,” J. Alloys Compd. 500, 129–133 (2010). https://doi.org/10.1016/j.jallcom.2010.04.003

    Article  CAS  Google Scholar 

  30. J. L. Dossett and C. V. White, “Introduction to cast iron heat treatment,” in Heat Treating of Irons and Steels, Ed. by J. L. Dossett and G. E. Totten, ASM Handbook, Vol. 4D (ASM International, 2014), pp. 483–492. https://doi.org/10.31399/asm.hb.v04d.a0005945

  31. ASTM E3, Standard Guide for Preparation of Metallographic Specimens. https://doi.org/10.1520/e0003-11r17

  32. ASTM A247, Standard Test Method for Evaluating the Microstructure of Graphite in Iron Castings. https://doi.org/10.1520/a0247-19

  33. ASTM E92, Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials. https://doi.org/10.1520/e0092-16

  34. ASTM E384, Standard Test Method for Microindentation Hardness of Materials. https://doi.org/10.1520/e0384-99

  35. A. S. Chaus, J. Sojka, and A. I. Pokrovskii, “Effect of hot plastic deformation on microstructural changes in cast iron with globular graphite,” Phys. Met. Metallogr. 114, 85–94 (2013). https://doi.org/10.1134/s0031918x13010031

    Article  ADS  Google Scholar 

  36. N. Bonora and A. Ruggiero, “Micromechanical modeling of ductile cast iron incorporating damage. Part I: Ferritic ductile cast iron,” Int. J. Solids Struct. 42, 1401–1424 (2005). https://doi.org/10.1016/j.ijsolstr.2004.07.025

    Article  Google Scholar 

  37. X. Zhao and T.-F. Jing, “Effect of sandwich structure on mechanical properties of gray cast iron plates,” in Advanced Design and Manufacture to Gain a Competitive Edge, Ed. by X. T. Yan, C. Jiang, and B. Eynard (Springer, London, 2008), pp. 241–247. https://doi.org/10.1007/978-1-84800-241-8_26

    Book  Google Scholar 

  38. J. Bača and A. S. Chaus, “Effect of plastic deformation on the structure and properties of cast iron with globular graphite,” Met. Sci. Heat Treat. 46, 188–191 (2004). https://doi.org/10.1023/b:msat.0000043098.43295.94

    Article  ADS  Google Scholar 

  39. S. Balos and L. Sidjanin, “Microdeformation of soft particles in metal matrix composites,” J. Mater. Process. Technol. 209, 482–487 (2009). https://doi.org/10.1016/j.jmatprotec.2008.02.015

    Article  CAS  Google Scholar 

  40. P. Rubin, R. Larker, E. Navara, and M. Antti, “Graphite formation and dissolution in ductile irons and steels having high silicon contents: Solid-state transformations,” Metallogr., Microstructure, Anal. 7, 587–595 (2018). https://doi.org/10.1007/s13632-018-0478-6

    Article  CAS  Google Scholar 

  41. D. R. Askeland and N. Birer, “Secondary graphite formation in tempered nodular cast iron weldments,” Weld. J. 58, 337–341 (1979).

    Google Scholar 

  42. R. Ruxanda and D. M. Stefanescu, “Graphite shape characterisation in cast iron—From visual estimation to fractal dimension,” Int. J. Cast Met. Res. 14, 207–216 (2002). https://doi.org/10.1080/13640461.2002.11819439

    Article  CAS  Google Scholar 

  43. J. Shi, M. Ghoreshy, R. W. Smith, and J. J. M. Too, “The use of spheroidal graphite cast irons to develop forgeability criteria based on local strain measurements,” J. Eng. Mater. Technol. 111, 26–31 (1989). https://doi.org/10.1115/1.3226429

    Article  CAS  Google Scholar 

  44. J. Shi, M. A. Savas, B. J. Yang, and R. W. Smith, “Spheroidal graphite ferritic cast iron—An ideal model material to examine the deformation a single phase matrix containing soft-spheroidal inclusions,” Int. J. Cast Met. Res. 16, 215–220 (2003). https://doi.org/10.1080/13640461.2003.11819585

    Article  CAS  Google Scholar 

  45. ASTM E2567, Standard Test Method for Determining Nodularity and Nodule Count in Ductile Iron Using Image Analysis. https://doi.org/10.1520/e2567-16a

  46. Z. Wang, X. Zhang, F. Xu, K. Qian, and K. Chen, “Effect of nodularity on mechanical properties and fracture of ferritic spheroidal graphite iron,” China Foundry 16, 386–392 (2019). https://doi.org/10.1007/s41230-019-9080-z

    Article  CAS  Google Scholar 

  47. D. Agnoletto, G. V. B. Lemos, A. B. Beskow, C. R. D. L. Lessa, and A. Reguly, “Methodology for determination of degree of nodularity in a ductile cast iron GGG 40 by ultrasonic velocity test,” South. Braz. J. Chem. 26 (26), 10–16 (2018). https://doi.org/10.48141/sbjchem.v26.n26.2018.15_2018.pdf

    Article  Google Scholar 

  48. J. Bahadori-Fallah, M. H. Farshidi, and A. R. Kiani-Rashid, “Equal channel angular pressing of spheroidal graphite cast iron,” Mater. Res. Express 6, 066542 (2019). https://doi.org/10.1088/2053-1591/ab0dcf

    Article  ADS  CAS  Google Scholar 

  49. J. D. Eshelby, “The determination of the elastic field of an ellipsoidal inclusion, and related problems,” Proc. R. Soc. London, Ser. A: Math. Phys. Sci. 241 (1226), 376–396 (1957). https://doi.org/10.1098/rspa.1957.0133

  50. J. D. Eshelby, “The elastic field outside an ellipsoidal inclusion,” Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 252 (1271), 561–569 (1959). https://doi.org/10.1098/rspa.1959.0173

  51. J. D. Eshelby, “Elastic inclusions and inhomogeneities,” Prog. Solid Mech. 2, 89–140 (1961).

    MathSciNet  Google Scholar 

  52. M. Lukhi, M. Kuna, and G. Hütter, “Micromechanical simulation of fatigue in nodular cast iron under stress-controlled loading,” Mater. Des. Process. Commun. 3, e214 (2020). https://doi.org/10.1002/mdp2.214

    Article  Google Scholar 

  53. Y. B. Zhang, T. Andriollo, S. Fæster, R. Barabash, R. Xu, N. Tiedje, J. Thorborg, J. Hattel, D. Juul Jensen, and N. Hansen, “Microstructure and residual elastic strain at graphite nodules in ductile cast iron analyzed by synchrotron X-ray microdiffraction,” Acta Mater. 167, 221–230 (2019). https://doi.org/10.1016/j.actamat.2019.01.038

    Article  ADS  CAS  Google Scholar 

  54. M. Mendas, S. Benayoun, M. H. Miloud, and I. Zidane, “Microhardness model based on geometrically necessary dislocations for heterogeneous material,” J. Mater. Res. Technol. 15, 2792–2801 (2021). https://doi.org/10.1016/j.jmrt.2021.09.093

    Article  CAS  Google Scholar 

  55. T. Andriollo, K. Hellström, M. R. Sonne, J. Thorborg, N. Tiedje, and J. Hattel, “Uncovering the local inelastic interactions during manufacture of ductile cast iron: How the substructure of the graphite particles can induce residual stress concentrations in the matrix,” J. Mech. Phys. Solids 111, 333–357 (2018). https://doi.org/10.1016/j.jmps.2017.11.005

    Article  ADS  MathSciNet  CAS  Google Scholar 

  56. T. Andriollo, S. Fæster, and G. Winther, “Probing the structure and mechanical properties of the graphite nodules in ductile cast irons via nano-indentation,” Mech. Mater. 122, 85–95 (2018). https://doi.org/10.1016/j.mechmat.2018.03.010

    Article  Google Scholar 

  57. H. Gao, Y. Hang, W. D. Nix, and J. W. Hutchinson, “Mechanism-based strain gradient plasticity? I. Theory,” J. Mech. Phys. Solids 47, 1239–1263 (1999). https://doi.org/10.1016/s0022-5096(98)00103-3

    Article  ADS  MathSciNet  Google Scholar 

  58. Y. B. Zhang, T. Andriollo, S. Fæster, R. Barabash, R. Xu, N. Tiedje, J. Thorborg, J. Hattel, D. Juul Jensen, and N. Hansen, “Microstructure and residual elastic strain at graphite nodules in ductile cast iron analyzed by synchrotron X-ray microdiffraction,” Acta Mater. 167, 221–230 (2019). https://doi.org/10.1016/j.actamat.2019.01.038

    Article  ADS  CAS  Google Scholar 

  59. N. A. Fleck, M. F. Ashby, and J. W. Hutchinson, “The role of geometrically necessary dislocations in giving material strengthening,” Scr. Mater. 48, 179–183 (2003). https://doi.org/10.1016/s1359-6462(02)00338-x

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank the Faculty of Engineering of Ferdowsi University in Mashhad for supporting the implementation of this study. The first author is also incredibly grateful to Prof. Hao Chen for his friendly helping attitude and comments. The first author also thanks Radfarman Company and its staff (Mr. Masoumi, Mr. Tabesh, and Mr. Ramesh) for supporting laboratory services.

Funding

This work was supported by ongoing university funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Kaboli-Mallak.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaboli-Mallak, S.K., Kheirkhahan, N., Edalati, E. et al. On the Morphology Variation of Graphite in Ductile Cast Iron through Severe Plastic Deformation. Phys. Metals Metallogr. 124, 1813–1825 (2023). https://doi.org/10.1134/S0031918X23601312

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X23601312

Keywords:

Navigation