Skip to main content
Log in

Study of Low-Temperature Thermomechanical Behavior of the Ti–18Zr–15Nb Superelastic Alloy under Different Temperature-Rate Conditions

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Biomedical shape-memory Ti–18Zr–15Nb alloy (at %) was subjected to upsetting with a true strain e = 0.7 in three different regimes: within a temperature range from 20 to 600°C at a deformation rate ξ = 0.1 s–1; at temperatures of 250 and 300°C at deformation rates ξ = 0.1, 1, and 10 s–1; and deformation at a temperature of 300°C and a rate ξ = 0.1 s–1 after annealing at a temperature of 300°C for different times (τ = 10, 60, 300, 600, and 1200 s). It has been established that the conditional yield stress σ0.2 continuously decreases with increasing temperature and, at the same time, the maximum stress σmax is observed to grow within this deformation temperature range of 250–300°C. In the region of temperatures from 200 to 400°C, fluctuations with an amplitude growing with an increase in the temperature are observed in the yield curves. The change in σ0.2 and σmax and the presence of fluctuations in the strain diagrams are produced by dynamic strain aging accompanied by the precipitation of excessive ω-phase particles at temperatures of 200–400°C. An increase in the deformation rate at temperatures of 250–300°C has a strong effect on the deformation behavior of this alloy due to considerable additional deformation-induced heating. Thus, an increase in the deformation rate to ξ = 10 s–1 leads to a jump-like decrease in the stress starting from e ≈ 0.3, afterwards the plastic yield curve takes a wavy shape with a low stress fluctuation frequency. The body-centered cubic (BCC) β-phase is the major phase after all the regimes of thermomechanical tests. Some weak ω-phase lines are observed after annealing at 300°C with exposure for more than 300 s, and essentially broadened ω-phase lines appear for the aged alloy after deformation only with long-term exposure (1200 s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. S. Miyazaki, H. Y. Kim, and H. Hosoda, “Development and characterization of Ni-free Ti-base shape memory and superelastic alloys,” Mater. Sci. Eng., A 438440, 18–24 (2006). https://doi.org/10.1016/j.msea.2006.02.054

    Article  CAS  Google Scholar 

  2. A. Biesiekierski, J. Wang, M. Abdel-Hady Gepreel, and C. Wen, “A new look at biomedical Ti-based shape memory alloys,” Acta Biomater. 8, 1661–1669 (2012). https://doi.org/10.1016/j.actbio.2012.01.018

    Article  CAS  Google Scholar 

  3. S. Prokoshkin, V. Brailovski, S. Dubinskiy, Y. Zhukova, V. Sheremetyev, A. Konopatsky, and K. Inaekyan, “Manufacturing, structure control, and functional testing of Ti–Nb-based SMA for medical application,” Shape Mem. Superelasticity 2, 130–144 (2016). https://doi.org/10.1007/s40830-016-0059-y

    Article  Google Scholar 

  4. V. Sheremetyev, M. Petrzhik, Yu. Zhukova, A. Kazakbiev, A. Arkhipova, M. Moisenovich, S. Prokoshkin, and V. Brailovski, “Structural, physical, chemical, and biological surface characterization of thermomechanically treated Ti–Nb-based alloys for bone implants,” J. Biomed. Mater. Res., Part B 108, 647–662 (2020). https://doi.org/10.1002/jbm.b.34419

    Article  CAS  Google Scholar 

  5. H. Y. Kim, J. Fu, H. Tobe, J. I. Kim, and S. Miyazaki, “Crystal structure, transformation strain, and superelastic property of Ti–Nb–Zr and Ti–Nb–Ta alloys,” Shape Mem. Superelasticity 1, 107–116 (2015). https://doi.org/10.1007/s40830-015-0022-3

    Article  Google Scholar 

  6. A. Kudryashova, V. Sheremetyev, K. Lukashevich, V. Cheverikin, K. Inaekyan, S. Galkin, S. Prokoshkin, and V. Brailovski, “Effect of a combined thermomechanical treatment on the microstructure, texture and superelastic properties of Ti–18Zr–14Nb alloy for orthopedic implants,” J. Alloys Compd. 843, 156066 (2020). https://doi.org/10.1016/j.jallcom.2020.156066

    Article  CAS  Google Scholar 

  7. K. E. Lukashevich, V. A. Sheremetyev, A. A. Kudryashova, M. A. Derkach, V. A. Andreev, S. P. Galkin, S. P. Prokoshkin, and V. Brailovski, “Effect of forging temperature on the structure, mechanical and functional properties of superelastic Ti–Zr–Nb bar stock for biomedical applications,” Lett. Mater. 12, 54–58 (2022). https://doi.org/10.22226/2410-3535-2022-1-54-58

    Article  Google Scholar 

  8. V. Sheremetyev, S. Dubinskiy, A. Kudryashova, S. Prokoshkin, and V. Brailovski, “In situ XRD study of stress- and cooling-induced martensitic transformations in ultrafine- and nano-grained superelastic Ti–18Zr–14Nb alloy,” J. Alloys Compd. 902, 163704 (2022). https://doi.org/10.1016/j.jallcom.2022.163704

    Article  CAS  Google Scholar 

  9. K. Lukashevich, V. Sheremetyev, A. Komissarov, V. Cheverikin, V. Andreev, S. Prokoshkin, and V. Brailovski, “Effect of cooling and annealing conditions on the microstructure, mechanical and superelastic behavior of a rotary forged Ti–18Zr–15Nb (at %) bar stock for spinal implants,” J. Funct. Biomater. 13, 259 (2022). https://doi.org/10.3390/jfb13040259

    Article  CAS  Google Scholar 

  10. V. Sheremetyev, K. Lukashevich, A. Kreitcberg, A. Kudryashova, M. Tsaturyants, S. Galkin, V. Andreev, S. Prokoshkin, and V. Brailovski, “Optimization of a thermomechanical treatment of superelastic Ti–Zr–Nb alloys for the production of bar stock for orthopedic implants,” J. Alloys Compd. 928, 167143 (2022). https://doi.org/10.1016/j.jallcom.2022.167143

    Article  CAS  Google Scholar 

  11. B. S. Hickman, “The formation of omega phase in titanium and zirconium alloys: A review,” J. Mater. Sci. 4, 554–563 (1969). https://doi.org/10.1007/bf00550217

    Article  CAS  Google Scholar 

  12. H. P. Ng, E. Douguet, C. J. Bettles, and B. C. Muddle, “Age-hardening behaviour of two metastable beta-titanium alloys,” Mater. Sci. Eng., A 527, 7017–7026 (2010). https://doi.org/10.1016/j.msea.2010.07.055

    Article  CAS  Google Scholar 

  13. J. Ballor, T. Li, F. Prima, C. J. Boehlert, and A. Devaraj, “A review of the metastable omega phase in beta titanium alloys: the phase transformation mechanisms and its effect on mechanical properties,” Int. Mater. Rev. 68, 26–45 (2022). https://doi.org/10.1080/09506608.2022.2036401

    Article  CAS  Google Scholar 

  14. C. M. Lee, C. P. Ju, and J. H. Chern Lin, “Structure-property relationship of cast Ti-Nb alloys,” J. Oral Rehabilitation 29, 314–322 (2002). https://doi.org/10.1046/j.1365-2842.2002.00825.x

    Article  CAS  Google Scholar 

  15. Ye.-H. Hon, J.-Yi. Wang, and Yu.-N. Pan, “Composition/phase structure and properties of titanium–niobium alloys,” Mater. Trans. 44, 2384–2390 (2003). https://doi.org/10.2320/matertrans.44.2384

    Article  CAS  Google Scholar 

  16. M. Niinomi, “Improvement in mechanical performance of low-modulus β-Ti–Nb–Ta–Zr system alloys by microstructural control via thermomechanical processing,” Int. J. Mod. Phys. B 22, 2787–2795 (2008). https://doi.org/10.1142/s0217979208047602

    Article  CAS  Google Scholar 

  17. M. Niinomi, “Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti–29Nb–13Ta–4.6Zr,” Biomaterials 24, 2673–2683 (2003). https://doi.org/10.1016/s0142-9612(03)00069-3

    Article  CAS  Google Scholar 

  18. J. Málek, F. Hnilica, J. Veselý, B. Smola, S. Bartáková, and J. Vaněk, “The influence of chemical composition and thermo-mechanical treatment on Ti–Nb–Ta–Zr alloys,” Mater. Des. 35, 731–740 (2012). https://doi.org/10.1016/j.matdes.2011.10.030

    Article  CAS  Google Scholar 

  19. Ya. Al-Zain, H. Kim, T. Koyano, H. Hosoda, and S. Miyazaki, “A comparative study on the effects of the ω and α phases on the temperature dependence of shape memory behavior of a Ti–27Nb alloy,” Scr. Mater. 103, 37–40 (2015). https://doi.org/10.1016/j.scriptamat.2015.02.032

    Article  CAS  Google Scholar 

  20. S. Li, M.-S. Choi, and T.-H. Nam, “Role of fine nano-scaled isothermal omega phase on the mechanical and superelastic properties of a high Zr-containing Ti–Zr–Nb–Sn shape memory alloy,” Mater. Sci. Eng., A 782, 139278 (2020). https://doi.org/10.1016/j.msea.2020.139278

    Article  CAS  Google Scholar 

  21. Z. Lin, L. Wang, X. Xue, W. Lu, J. Qin, and D. Zhang, “Microstructure evolution and mechanical properties of a Ti–35Nb–3Zr–2Ta biomedical alloy processed by equal channel angular pressing (ECAP),” Mater. Sci. Eng., C 33, 4551–4561 (2013). https://doi.org/10.1016/j.msec.2013.07.010

    Article  CAS  Google Scholar 

  22. D. Gunderov, S. Prokoshkin, A. Churakova, V. Sheremetyev, and I. Ramazanov, “Effect of HPT and accumulative HPT on structure formation and microhardness of the novel Ti18Zr15Nb alloy,” Mater. Lett. 283, 128819 (2021). https://doi.org/10.1016/j.matlet.2020.128819

    Article  CAS  Google Scholar 

  23. V. Sheremetyev, A. Churakova, M. Derkach, D. Gunderov, G. Raab, and S. Prokoshkin, “Effect of ECAP and annealing on structure and mechanical properties of metastable beta Ti–18Zr–15Nb (at %) alloy,” Mater. Lett. 305, 130760 (2021). https://doi.org/10.1016/j.matlet.2021.130760

    Article  CAS  Google Scholar 

  24. A. K. Singh, M. Mohan, and C. Divakar, “Pressure-induced alpha-omega transformation in titanium: Features of the kinetics data,” J. Appl. Phys. 54, 5721–5726 (1983). https://doi.org/10.1063/1.331793

    Article  CAS  Google Scholar 

  25. D. Errandonea, Y. Meng, M. Somayazulu, and D. Häusermann, “Pressure-induced transition in titanium metal: A systematic study of the effects of uniaxial stress,” Phys. B: Condens. Matter 355, 116–125 (2005). https://doi.org/10.1016/j.physb.2004.10.030

    Article  CAS  Google Scholar 

  26. Yu. Ivanisenko, A. Kilmametov, H. Rösner, and R. Z. Valiev, “Evidence of α → ω phase transition in titanium after high pressure torsion,” Int. J. Mater. Res. 99, 36–41 (2008). https://doi.org/10.3139/146.101606

    Article  CAS  Google Scholar 

  27. Y. B. Wang, Y. H. Zhao, Q. Lian, X. Z. Liao, R. Z. Valiev, S. P. Ringer, Y. T. Zhu, and E. J. Lavernia, “Grain size and reversible beta-to-omega phase transformation in a Ti alloy,” Scr. Mater. 63, 613–616 (2010). https://doi.org/10.1016/j.scriptamat.2010.05.045

    Article  CAS  Google Scholar 

  28. K. Y. Xie, Ya. Wang, Yo. Zhao, L. Chang, G. Wang, Z. Chen, Ya. Cao, X. Liao, E. J. Lavernia, R. Z. Valiev, B. Sarrafpour, H. Zoellner, and S. P. Ringer, “Nanocrystalline β-Ti alloy with high hardness, low Young’s modulus and excellent in vitro biocompatibility for biomedical applications,” Mater. Sci. Eng., C 33, 3530–3536 (2013). https://doi.org/10.1016/j.msec.2013.04.044

    Article  CAS  Google Scholar 

  29. A. H. Cottrell, “Theory of dislocations,” Prog. Met. Phys. 1, 77–126 (1949). https://doi.org/10.1016/0502-8205(49)90004-0

    Article  CAS  Google Scholar 

  30. D. Caillard, “Dynamic strain ageing in iron alloys: The shielding effect of carbon,” Acta Mater. 112, 273–284 (2016). https://doi.org/10.1016/j.actamat.2016.04.018

    Article  CAS  Google Scholar 

  31. S. Banerjee and U. M. Naik, “Plastic instability in an omega forming Ti-15% Mo alloy,” Acta Mater. 44, 3667–3677 (1996). https://doi.org/10.1016/1359-6454(96)00012-2

    Article  CAS  Google Scholar 

  32. D. Gunderov, K. Kim, S. Gunderova, A. Churakova, Yu. Lebedev, R. Nafikov, M. Derkach, K. Lukashevich, V. Sheremetyev, and S. Prokoshkin, “Effect of high-pressure torsion and annealing on the structure, phase composition, and microhardness of the Ti–18Zr–15Nb (at %) alloy,” Materials 16, 1754 (2023). https://doi.org/10.3390/ma16041754

    Article  CAS  Google Scholar 

  33. F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed. (Pergamon, 2012). https://doi.org/10.1016/B978-0-08-044164-1.X5000-2

    Book  Google Scholar 

  34. P. Rodriguez, “Serrated plastic flow,” Bull. Mater. Sci. 6, 653–663 (1984). https://doi.org/10.1007/bf02743993

    Article  Google Scholar 

  35. M. Avalos, I. Alvarez-Armas, and A. F. Armas, “Dynamic strain aging effects on low-cycle fatigue of AISI 430F,” Mater. Sci. Eng., A 513514, 1–7 (2009). https://doi.org/10.1016/j.msea.2009.01.047

    Article  CAS  Google Scholar 

  36. S. C. Tjong and S. M. Zhu, “Tensile deformation behavior and work hardening mechanism of Fe–28Mn–9Al–0.4C and Fe–28Mn–9Al–1C alloys,” Mater. Trans., JIM 38, 112–118 (1997). https://doi.org/10.2320/matertrans1989.38.112

    Article  CAS  Google Scholar 

  37. B. K. Choudhary, E. I. Samuel, G. Sainath, J. Christopher, and M. D. Mathew, “Influence of temperature and strain rate on tensile deformation and fracture behavior of P92 ferritic steel,” Metall. Mater. Trans. A 44, 4979–4992 (2013). https://doi.org/10.1007/s11661-013-1869-6

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Akhmadkulov Otabek Bakhtierzhon Ugli for his help in experimental studies.

Funding

This study was founded supported by the Russian Scientific Foundation (project no. 20-63-47063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Derkach.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Glushachenkova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derkach, M.A., Sheremetyev, V.A., Korotitskiy, A.V. et al. Study of Low-Temperature Thermomechanical Behavior of the Ti–18Zr–15Nb Superelastic Alloy under Different Temperature-Rate Conditions. Phys. Metals Metallogr. 124, 934–943 (2023). https://doi.org/10.1134/S0031918X23601300

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X23601300

Keywords:

Navigation