Skip to main content
Log in

Enhancing Steel Properties through Microstructure Design Using Cyclic Heat Treatment: A Comprehensive Review

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

This study investigates the utilization of cyclic heat treatment (CHT), also referred to as thermal cycling, to design microstructures in steel to achieve specific properties. Through a comprehensive review of existing literature, it analyzes the influence of CHT on microstructure, strengthening mechanisms, and structure-property relationships, drawing parallels with conventional heat treatment methods. Mechanical properties are examined to establish meaningful correlations with structural modifications. The study delves into the impact of CHT parameters on microstructural changes and suggests to optimize these parameters to attain an ideal microstructure. While underscoring the potential advantages of CHT in enhancing steel’s mechanical properties, it also conscientiously acknowledges its limitations, concluding with valuable recommendations for future research and practical implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. J. Payson, P. Hodapp, and W. Leeder, “The spheroidizing of steel by isothermal transformation,” Trans. Am. Soc. Met. 28, 306 (1940).

    CAS  Google Scholar 

  2. A. Mishra, C. Mondal, and J. Maity, “Microstructural modifications in AISI 1080 eutectoid steel under combined cyclic heat treatment,” Steel Res. Int. 87, 424–435 (2016). https://doi.org/10.1002/srin.201500227

    Article  CAS  Google Scholar 

  3. A. Saha, D. K. Mondal, K. Biswas, and J. Maity, “Development of high strength ductile hypereutectoid steel by cyclic heat treatment process,” Mater. Sci. Eng., A 541, 204–215 (2012). https://doi.org/10.1016/j.msea.2012.02.026

    Article  CAS  Google Scholar 

  4. J. Singh and S. K. Nath, “Effects of cyclic heat treatment on microstructure and mechanical properties of 13% Cr–4% Ni martensitic stainless steel,” J. Mater. Eng. Perform. 29, 2478–2490 (2020). https://doi.org/10.1007/s11665-020-04787-w

    Article  CAS  Google Scholar 

  5. K. Nakazawa, Y. Kawabe, and S. Muneki, “Grain refinement of high-strength maraging steels through cyclic heat treatment,” Mater. Sci. Eng. 33, 49–56 (1978). https://doi.org/10.1016/0025-5416(78)90152-0

    Article  CAS  Google Scholar 

  6. B. R. Kumar, S. Sharma, B. P. Kashyap, and N. Prabhu, “Ultrafine grained microstructure tailoring in austenitic stainless steel for enhanced plasticity,” Mater. Des. 68, 63–71 (2015). https://doi.org/10.1016/j.matdes.2014.12.014

    Article  CAS  Google Scholar 

  7. B. Kishor, G. P. Chaudhari, and S. K. Nath, “Slurry erosion behaviour of thermomechanically treated 16Cr5Ni stainless steel,” Tribol. Int. 119, 411–418 (2018). https://doi.org/10.1016/j.triboint.2017.11.025

    Article  CAS  Google Scholar 

  8. J. N. Wang, J. Yang, Q. Xia, and Yo. Wang, “On the grain size refinement of TiAl alloys by cyclic heat treatment,” Mater. Sci. Eng., A 329331, 118–123 (2002). https://doi.org/10.1016/s0921-5093(01)01543-x

    Article  Google Scholar 

  9. J. Y. Koo and G. Thomas, “Thermal cycling treatments and microstructures for improved properties of Fe–0.12% C–0.5% Mn steels,” Mater. Sci. Eng. 24, 187–198 (1976). https://doi.org/10.1016/0025-5416(76)90112-9

    Article  CAS  Google Scholar 

  10. S. Sui, Yo. Chew, Z. Hao, F. Weng, C. Tan, Z. Du, and G. Bi, “Effect of cyclic heat treatment on microstructure and mechanical properties of laser aided additive manufacturing Ti–6Al–2Sn–4Zr–2Mo alloy,” Adv. Powder Mater. 1, 100002 (2021). https://doi.org/10.1016/j.apmate.2021.09.002

    Article  Google Scholar 

  11. H.-K. Park, T.-W. Na, J. M. Park, Ya. Kim, G.‑H. Kim, B.-S. Lee, and H. G. Kim, “Effect of cyclic heat treatment on commercially pure titanium part fabricated by electron beam additive manufacturing,” J. Alloys Compd. 796, 300–306 (2019). https://doi.org/10.1016/j.jallcom.2019.04.335

    Article  CAS  Google Scholar 

  12. U. Ravi Kiran, J. Kumar, V. Kumar, M. Sankaranarayana, G. V. S. Nageswara Rao, and T. K. Nandy, “Effect of cyclic heat treatment and swaging on mechanical properties of the tungsten heavy alloys,” Mater. Sci. Eng., A 656, 256–265 (2016). https://doi.org/10.1016/j.msea.2016.01.024

    Article  CAS  Google Scholar 

  13. A. Kościelna and W. Szkliniarz, “Effect of cyclic heat treatment parameters on the grain refinement of Ti–48Al–2Cr–2Nb alloy,” Mater. Charact. 60, 1158–1162 (2009). https://doi.org/10.1016/j.matchar.2009.03.008

    Article  CAS  Google Scholar 

  14. H. Ozcan, J. Ma, S. J. Wang, I. Karaman, Y. Chumlyakov, J. Brown, and R. D. Noebe, “Effects of cyclic heat treatment and aging on superelasticity in oligocrystalline Fe–Mn–Al–Ni shape memory alloy wires,” Scr. Mater. 134, 66–70 (2017). https://doi.org/10.1016/j.scriptamat.2017.02.023

    Article  CAS  Google Scholar 

  15. H. Peng, L. Yong, Ya. Zuo, J. Yan, H. Wang, and Yu. Wen, “Effect of cyclic heat treatment on abnormal grain growth in Fe–Mn–Al-based shape memory alloys with different Ni contents,” J. Mater. Sci. Technol. 153, 8–21 (2023). https://doi.org/10.1016/j.jmst.2022.12.059

    Article  CAS  Google Scholar 

  16. A. Saha, D. K. Mondal, and J. Maity, “Effect of cyclic heat treatment on microstructure and mechanical properties of 0.6wt% carbon steel,” Mater. Sci. Eng., A 527, 4001–4007 (2010). https://doi.org/10.1016/j.msea.2010.03.003

    Article  CAS  Google Scholar 

  17. A. Saha, D. K. Mondal, and J. Maity, “An alternate approach to accelerated spheroidization in steel by cyclic annealing,” J. Mater. Eng. Perform. 20, 114–119 (2011). https://doi.org/10.1007/s11665-010-9653-x

    Article  CAS  Google Scholar 

  18. A. Saha, D. K. Mondal, K. Biswas, and J. Maity, “Microstructural modifications and changes in mechanical properties during cyclic heat treatment of 0.16% carbon steel,” Mater. Sci. Eng., A 534, 465–475 (2012). https://doi.org/10.1016/j.msea.2011.11.095

    Article  CAS  Google Scholar 

  19. J. Maity, A. Saha, D. K. Mondal, and K. Biswas, “Mechanism of accelerated spheroidization of steel during cyclic heat treatment around the upper critical temperature,” Philos. Mag. Lett. 93, 231–237 (2013). https://doi.org/10.1080/09500839.2012.758390

    Article  CAS  ADS  Google Scholar 

  20. A. Shibata, S. Daido, D. Terada, and N. Tsuji, “Microstructures of pearlite and martensite transformed from ultrafine-grained austenite fabricated through cyclic heat treatment in medium carbon steels,” Mater. Trans. 54, 1570–1574 (2013). https://doi.org/10.2320/matertrans.mh201312

    Article  CAS  Google Scholar 

  21. A. A. Omar, M. El-Shennawy, and O. A. Elhabib, “Effect of cyclic heat treatment on microstructure and mechanical properties of C45 steel,” Int. J. Mech. Eng. 3 (5), 69–76 (2014).

    Google Scholar 

  22. Zh.-Q. Lü, H.-F. Zhang, Q. Meng, Zh.-H. Wang, and W.-T. Fu, “Effect of cyclic annealing on microstructure and mechanical properties of medium carbon steel,” J. Iron Steel Res. Int. 23, 145–150 (2016). https://doi.org/10.1016/s1006-706x(16)30026-7

    Article  Google Scholar 

  23. A. R. Subhani and D. K. Mondal, “Effect of repeated austenitisation and cooling on the microstructure, hardness and tensile behaviour of 0.16 wt % carbon steel,” Arch. Metall. Mater. 63, 1141–1152 (2018). https://doi.org/10.24425/123787

    Article  CAS  Google Scholar 

  24. A. R. Subhani, D. K. Mondal, C. Mondal, H. Roy, and J. Maity, “Development of a high-strength low-carbon steel with reasonable ductility through thermal cycling,” J. Mater. Eng. Perform. 28, 2192–2201 (2019). https://doi.org/10.1007/s11665-019-03969-5

    Article  CAS  Google Scholar 

  25. J. O. Aweda, T. A. Orhadahwe, and I. O. Ohijeagbon, “Rapid cyclic heating of mild steel and its effects on microstructure and mechanical properties,” IOP Conf. Ser.: Mater. Sci. Eng. 413, 012016 (2018). https://doi.org/10.1088/1757-899X/413/1/012016

  26. A. A. Adeleke, P. P. Ikubanni, T. A. Orhadahwe, J. O. Aweda, J. K. Odusote, and O. O. Agboola, “Microstructural assessment of AISI 1021 steel under rapid cyclic heat treatment process,” Results Eng. 4, 100044 (2019). https://doi.org/10.1016/j.rineng.2019.100044

    Article  Google Scholar 

  27. O. T. Aghogho, A. A. Akanni, A. J. Olayiwola, P. P. Ikubanni, and J. K. Odusote, “Microstructural image analyses of mild carbon steel subjected to a rapid cyclic heat treatment,” J. Chem. Technol. Metall. 55, 198–209 (2020).

    CAS  Google Scholar 

  28. M. He, Z. Zhentai, F. Shi, D. Guo, and J. Yu, “A novel crack healing technique in a low carbon steel by cyclic phase transformation heat treatment: The process and mechanism,” Mater. Sci. Eng., A 772, 138712 (2020). https://doi.org/10.1016/j.msea.2019.138712

    Article  CAS  Google Scholar 

  29. Z. Q. Lv, B. Wang, Z. H. Wang, S. H. Sun, and W. T. Fu, “Effect of cyclic heat treatments on spheroidizing behavior of cementite in high carbon steel,” Mater. Sci. Eng., A 574, 143–148 (2013). https://doi.org/10.1016/j.msea.2013.02.059

    Article  CAS  Google Scholar 

  30. A. Mishra, A. Saha, and J. Maity, “Microstructure evolution in AISI 1080 eutectoid steel under cyclic quenching treatment,” Metallogr., Microstructure, Anal. 4, 355–370 (2015). https://doi.org/10.1007/s13632-015-0222-4

    Article  CAS  Google Scholar 

  31. A. Mishra and J. Maity, “Structure–property correlation of AISI 1080 steel subjected to cyclic quenching treatment,” Mater. Sci. Eng., A 646, 169–181 (2015). https://doi.org/10.1016/j.msea.2015.08.018

    Article  CAS  Google Scholar 

  32. A. Mishra, C. Mondal, and J. Maity, “Effect of combined cyclic heat treatment on AISI 1080 steel: Part II–Mechanical property evaluation,” Steel Res. Int. 88, 1600215 (2017). https://doi.org/10.1002/srin.201600215

    Article  CAS  Google Scholar 

  33. A. Mishra, A. Saha, and J. Maity, “Development of high strength ductile eutectoid steel through cyclic heat treatment involving incomplete austenitization followed by forced air cooling,” Mater. Charact. 114, 277–288 (2016). https://doi.org/10.1016/j.matchar.2016.03.001

    Article  CAS  Google Scholar 

  34. S. Maji, A. R. Subhani, B. K. Show, and J. Maity, “Effect of cooling rate on microstructure and mechanical properties of eutectoid steel under cyclic heat treatment,” J. Mater. Eng. Perform. 26, 3058–3070 (2017). https://doi.org/10.1007/s11665-017-2779-3

    Article  CAS  Google Scholar 

  35. S. Mishra, A. Mishra, B. K. Show, and J. Maity, “Simultaneous enhancement of ductility and strength in AISI 1080 steel through a typical cyclic heat treatment,” Mater. Sci. Eng., A 688, 262–271 (2017). https://doi.org/10.1016/j.msea.2017.02.003

    Article  CAS  Google Scholar 

  36. H. Li, M. Han, D. Li, J. Li, and D. Xu, “Effect of cyclic heat treatment on microstructure and mechanical properties of 50CrV4 steel,” J. Cent. S. Univ. 22, 409–415 (2015). https://doi.org/10.1007/s11771-015-2536-4

    Article  CAS  Google Scholar 

  37. Z. Lv, X.-P. Ren, Zh.-H. Li, Z.-M. Lu, and M.-M. Gao, “Effects of two different cyclic heat treatments on microstructure and mechanical properties of Ti–V microalloyed steel,” Mater. Res. 18, 304–312 (2015). https://doi.org/10.1590/1516-1439.302414

    Article  ADS  Google Scholar 

  38. G. Saito, N. Sakaguchi, M. Ohno, K. Matsuura, M. Takeuchi, T. Sano, K. Minoguchi, and T. Yamaoka, “Effects of fine precipitates on austenite grain refinement of micro-alloyed steel during cyclic heat treatment,” ISIJ Int. 59, 2098–2104 (2019). https://doi.org/10.2355/isijinternational.isijint-2019-153

    Article  CAS  Google Scholar 

  39. S. Ghaemifar and H. Mirzadeh, “Refinement of banded structure via thermal cycling and its effects on mechanical properties of dual phase steel,” Steel Res. Int. 89, 1700531 (2018). https://doi.org/10.1002/srin.201700531

    Article  CAS  Google Scholar 

  40. Yi. Tong, Yu-Q. Zhang, J. Zhao, G.-Zh. Quan, and W. Xiong, “Wear-resistance improvement of 65Mn low-alloy steel through adjusting grain refinement by cyclic heat treatment,” Materials 14, 7636 (2021). https://doi.org/10.3390/ma14247636

    Article  CAS  PubMed Central  ADS  PubMed  Google Scholar 

  41. B. Zhao, Yu. Wang, K. Ding, G. Wu, T. Wei, H. Pan, and Yu. Gao, “Exceptional cross-tension property in resistance spot welded 7Mn steels by combining cyclic heat treatment and intercritical annealing,” Int. J. Steel Struct. 23, 1020–1030 (2023). https://doi.org/10.1007/s13296-023-00748-w

    Article  Google Scholar 

  42. N. Xiao, C. Zhang, W. Hui, H. Che, and Z. Yang, “Study of an economical and effective heat treatment method to improve the performance of gear steels,” Steel Res. Int. 94, 2300030 (2023). https://doi.org/10.1002/srin.202300030

    Article  CAS  Google Scholar 

  43. J. Hidalgo and M. J. Santofimia, “Effect of prior austenite grain size refinement by thermal cycling on the microstructural features of as-quenched lath martensite,” Metall. Mater. Trans. A 47, 5288–5301 (2016). https://doi.org/10.1007/s11661-016-3525-4

    Article  CAS  Google Scholar 

  44. J. Singh and S. K. Nath, “Improvement in mechanical properties and wear resistance of 13Cr–4Ni martensitic steel by cyclic heat treatment,” Trans. Indian Inst. Met. 73, 2519–2528 (2020). https://doi.org/10.1007/s12666-020-02043-2

    Article  CAS  Google Scholar 

  45. J. Singh and S. K. Nath, “Thermal cycling effects on microstructural evolution and hardness of martensite 13 wt %Cr–4 wt % Ni steel,” in Advances in Engineering Materials, Ed. by B. P. Sharma, G. S. Rao, S. Gupta, P. Gupta, and A. Prasad, Lecture Notes in Mechanical Engineering (Springer, Singapore, 2021), pp. 239–246. https://doi.org/10.1007/978-981-33-6029-7_23

  46. J. Singh and S. K. Nath, “Microstructural characterization and investigation of slurry erosion performance of cyclically heat treated martensite steel,” Eng. Failure Anal. 131, 105833 (2022). https://doi.org/10.1016/j.engfailanal.2021.105833

    Article  CAS  Google Scholar 

  47. J. Singh and S. K. Nath, “Dissolution of delta ferrite through cyclic treatment and its influence on the hydro abrasive erosion and mechanisms,” Tribol. Int. 161, 107056 (2021). https://doi.org/10.1016/j.triboint.2021.107056

    Article  CAS  Google Scholar 

  48. J. Singh and S. K. Nath, “Improved slurry erosion resistance of martensitic 13 wt % Cr–4 wt % Ni steel subjected to cyclic heat treatment,” Wear 460461, 203476 (2020). https://doi.org/10.1016/j.wear.2020.203476

    Article  CAS  Google Scholar 

  49. C. Ding, J. Liu, B. Ning, M. Huang, and H. Wu, “Enhanced strength-plasticity matching of lamellar 1 GPa-grade dual-phase steels via cyclic intercritical quenching,” J. Mater. Res. Technol. 22, 3115–3131 (2023). https://doi.org/10.1016/j.jmrt.2022.12.128

    Article  CAS  Google Scholar 

  50. B. Ravi Kumar, B. Mahato, S. Sharma, and J. K. Sahu, “Effect of cyclic thermal process on ultrafine grain formation in AISI 304L austenitic stainless steel,” Metall. Mater. Trans. A 40, 3226–3234 (2009). https://doi.org/10.1007/s11661-009-0033-9

    Article  CAS  Google Scholar 

  51. B. R. Kumar and D. Raabe, “Tensile deformation characteristics of bulk ultrafine-grained austenitic stainless steel produced by thermal cycling,” Scr. Mater. 66, 634–637 (2012). https://doi.org/10.1016/j.scriptamat.2012.01.052

    Article  CAS  Google Scholar 

  52. B. R. Kumar and A. Gujral, “Plastic deformation modes in mono- and bimodal-type ultrafine-grained austenitic stainless steel,” Metallogr. Microstruct. Anal. 3, 397–407 (2014). https://doi.org/10.1007/s13632-014-0152-6

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing university funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jai Singh.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jai Singh, Nath, S.K. Enhancing Steel Properties through Microstructure Design Using Cyclic Heat Treatment: A Comprehensive Review. Phys. Metals Metallogr. 124, 1783–1794 (2023). https://doi.org/10.1134/S0031918X23601178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X23601178

Keywords:

Navigation