Skip to main content
Log in

MD Simulations of Collision Cascades in α-Ti. Cluster Statistics and Governing Mechanisms of Point Defect Cluster Formation

  • THEORY OF METALS
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

A comprehensive statistical treatment is conducted to analyse the outcomes of MD simulations of collision cascades in α-titanium in a wide range of primary knocked-on atoms (PKAs) energy 5 keV \( \leqslant {{E}_{{{\text{PKA}}}}} \leqslant \) 25 keV and irradiation temperature 100 K \(~ \leqslant T \leqslant ~\) 900 K. The fractions of vacancies \({{{{\varepsilon }}}_{{\text{v}}}}\) and interstitial atoms \({{{{\varepsilon }}}_{{\text{i}}}}\) in clusters of point defects formed in individual cascades and their average values \(\left\langle {{{{{\varepsilon }}}_{{\text{v}}}}} \right\rangle \) and \(\left\langle {{{{{\varepsilon }}}_{{\text{i}}}}} \right\rangle \), the average sizes of vacancy \(\left\langle {{{N}_{{{\text{vac}}}}}} \right\rangle \) and interstitial \(\left\langle {{{N}_{{{\text{SIA}}}}}} \right\rangle \) clusters, and the average number of vacancy \(\left\langle {{{Y}_{{{\text{vac}}}}}} \right\rangle \) and interstitial \(\left\langle {{{Y}_{{{\text{SIA}}}}}} \right\rangle \) clusters per cascade are evaluated. The physical mechanisms that determine the dependence of \(\left\langle {{{{{\varepsilon }}}_{{\text{v}}}}} \right\rangle \), \(\left\langle {{{{{\varepsilon }}}_{{\text{i}}}}} \right\rangle \), \(\left\langle {{{N}_{{{\text{vac}}}}}} \right\rangle \), \(\left\langle {{{N}_{{{\text{SIA}}}}}} \right\rangle \), \(\left\langle {{{Y}_{{{\text{vac}}}}}} \right\rangle \), and \(\left\langle {{{Y}_{{{\text{SIA}}}}}} \right\rangle \) on simulation parameters \(\left( {{{E}_{{{\text{PKA}}}}},T} \right)\) have been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. A. T. Raji, S. Scandolo, R. Mazzarello, S. Nsengiyumva, M. Haerting, and D. T. Britton, “Ab initio pseudopotential study of vacancies and self-interstitials in hcp titanium,” Philos. Mag. 89, 1629–1645 (2009).

    Article  CAS  Google Scholar 

  2. R. E. Voskoboinikov, “MD Simulations of collision cascades in α-Ti. The residual number of radiation defects, cascade relaxation time and displacement cascade region morphology,” Phys. Met. Metallogr. 124, 743–750 (2023). https://doi.org/10.1134/S0031918X2360121X

    Article  Google Scholar 

  3. R. E. Voskoboinikov, Yu. N. Osetsky, and D. J. Bacon, “Computer simulation of primary damage creation in displacement cascades in copper. I. Defect creation and cluster statistics,” J. Nucl. Mater. 377, 385–395 (2008). https://doi.org/10.1016/j.jnucmat.2008.01.030

    Article  CAS  Google Scholar 

  4. R. Voskoboinikov, “Statistics of primary radiation defects in pure nickel,” Nucl. Instrum. Methods Phys. Res., Sect. B 478, 201–204 (2020). https://doi.org/10.1016/j.nimb.2020.06.034

    Article  CAS  Google Scholar 

  5. R. E. Voskoboinikov, Yu. N. Osetsky, and D. J. Bacon, “Statistics of primary damage creation in high-energy displacement cascades in copper and zirconium,” Nucl. Instrum. Methods Phys. Res., Sect. B 242, 68–70 (2006). https://doi.org/10.1016/j.nimb.2005.08.166

    Article  CAS  Google Scholar 

  6. R. E. Voskoboinikov, “Radiation defects in aluminum: MD simulations of collision cascades in the bulk of material,” Phys. Met. Metallogr. 120, 1–8 (2019). https://doi.org/10.1134/S0031918X18110212

    Article  CAS  Google Scholar 

  7. R. Voskoboinikov, “A contribution of L10 ordered crystal structure to the high radiation tolerance of γ-TiAl intermetallics,” Nucl. Instrum. Methods Phys. Res., Sect. B 460, 92–97 (2019). https://doi.org/10.1016/j.nimb.2019.04.080

    Article  CAS  Google Scholar 

  8. R. Voskoboinikov, “An insight into radiation resistance of D019 Ti3Al intermetallics,” J. Nucl. Mater. 519, 239–246 (2019). https://doi.org/10.1016/j.jnucmat.2019.03.046

    Article  CAS  Google Scholar 

  9. R. Voskoboinikov, “MD simulations of primary damage formation in L12 Ni3Al intermetallics,” J. Nucl. Mater. 522, 123–135 (2019). https://doi.org/10.1016/j.jnucmat.2019.05.009

    Article  CAS  Google Scholar 

  10. K. Nordlund and R. S. Averback, “Point defect movement and annealing in collision cascades,” Phys. Rev. B 56, 2421–2431 (1997). https://doi.org/10.1103/physrevb.56.2421

    Article  CAS  Google Scholar 

  11. P. Lindemann, “Über die Berechnung molekularer Eigenfrequenzen,” Phys. Z. 11, 609–612 (1910).

    CAS  Google Scholar 

  12. R. E. Voskoboinikov, Yu. N. Osetsky, and D. J. Bacon, “Interaction of edge dislocation with point defect clusters created in displacement cascades in α-zirconium,” Mater. Sci. Eng., A 400401, 49–53 (2005). https://doi.org/10.1016/j.msea.2005.03.055

    Article  CAS  Google Scholar 

  13. G. S. Was, Fundamentals of Radiation Materials Science: Metals and Alloys (Springer, New York). https://doi.org/10.1007/978-1-4939-3438-6

  14. C. Gardiner, Stochastic Methods: A Handbook for the Natural and Social Sciences, Springer Series in Synergetics (Springer, Berlin, 2009).

  15. N. De Diego, Y. N. Osetsky, and D. J. Bacon, “Mobility of interstitial clusters in alpha-zirconium,” Metall. Mater. Trans. A 33, 783–789 (2002). https://doi.org/10.1007/s11661-002-0145-y

    Article  Google Scholar 

  16. Example of one-dimensional diffusion of di-, tri-, etc., interstitial sites located in the basis plane along close-packed crystallographic directions \(\left\langle {11\bar {2}0} \right\rangle \) in α-Ti at low temperatures. https://youtu.be/RgldmdibdHs.

  17. Variation in diffusion mobility of di-, tri-, etc., interstitial sites located in the basis plane, from one crystallographic direction \(\left\langle {11\bar {2}0} \right\rangle \) to the other crystallographic direction \(\left\langle {11\bar {2}0} \right\rangle \) in α-Ti at temperatures T ≥ 600 K. https://youtu.be/eNluPvqktc4.

  18. Relaxation of collision cascade initiated by PVA with an energy of E PVA = 25 keV in α-titanium at a temperature of T = 900 K. https://youtu.be/roMU-RTats.

  19. Relaxation of displacement cascade initiated by PVA with an energy of E PVA = 15 keV in α-titanium at a temperature of T = 900 K. https://youtu.be/JkJKSaPwcfY.

Download references

ACKNOWLEDGMENTS

MD simulations were conducted using facilities of NRNU MEPhI high-performance computing center and computing resources of the federal collective usage center Complex for Simulation and Data Processing for Mega-science Facilities at NRC “Kurchatov Institute,” http://ckp.nrcki.ru/.

Funding

The work was supported in part by the Ministry of Science and Higher Education of the Russian Federation, grant no. 075-11-2021-085.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Voskoboinikov.

Ethics declarations

The author declares that he has no conflicts of interest and no affiliations with or involvement in any organization or entity with any financial or non-financial interest in the subject matter or materials discussed in this research paper.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voskoboinikov, R.E. MD Simulations of Collision Cascades in α-Ti. Cluster Statistics and Governing Mechanisms of Point Defect Cluster Formation. Phys. Metals Metallogr. 124, 751–757 (2023). https://doi.org/10.1134/S0031918X23601154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X23601154

Keywords:

Navigation