Skip to main content
Log in

Investigation of the Effects of Sandblasting, Acid Etching, and Anodizing Parameters in the SLA + Anodizing on the Surface Treatment of Titanium Dental Implant Fixtures

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

This study investigated the various parameters of the sandblasting, acid-etching, and anodizing processes for 68 different states of surface treatment of dental implant fixtures using the SLA + anodizing procedure. To examine each of the fixture surfaces, 9 different tests were performed, including AFM, FESEM, EDAX, CHNO, XRD, EDAX-Map, MTT, Surface energy, and bone formation tests, to thoroughly examine the surfaces from different aspects. 450 dental implant fixture samples were used due to the high number of types of tests, variables, and specific conditions of each experiment. To validate the results, the tests were compared with SLA methos as a common method for dental implant treatment. The final results indicate the superiority of the process numbered 35 (sandblast particle size 75 μm; spraying pressure of sandblast particles 4 bar; sandblast particle spraying angle 30 deg; temperature of acid etching 75°C; time of acid etching 6 min, anodizing voltage 100 V; duration of anodizing 5 min), with the SLA + anodizing method. State number 35 had a surface roughness of 2.018 μm 97% cellular viability; 56.2 millinewton per meter surface energy, and standard chemical composition and mineralization after treatment. Within a period of 6 days, it completely outperformed all other states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. V. Mathieu, R. Vayron, G. Richard, G. Lambert, S. Naili, J. Meningaud, and G. Haiat, “Biomechanical determinants of the stability of dental implants: Influence of the bone–implant interface properties,” J. Biomechanics 47, 3–13 (2014). https://doi.org/10.1016/j.jbiomech.2013.09.021

    Article  Google Scholar 

  2. K. Isoda, Ya. Ayukawa, Yo. Tsukiyama, M. Sogo, Ya. Matsushita, and K. Koyano, “Relationship between the bone density estimated by cone-beam computed tomography and the primary stability of dental implants,” Clin. Oral Implants Res. 23, 832–836 (2012). https://doi.org/10.1111/j.1600-0501.2011.02203.x

    Article  PubMed  Google Scholar 

  3. D. Bayarchimeg, H. Namgoong, B. Kim, M. Kim, S. Kim, T.-I. Kim, Ya. Seol, Yo. Lee, Yo. Ku, I.‑Ch. Rhyu, E. Lee, and K.-T. Koo, “Evaluation of the correlation between insertion torque and primary stability of dental implants using a block bone test,” J. Periodontal Implant Sci. 43, 30–36 (2013). https://doi.org/10.5051/jpis.2013.43.1.30

    Article  PubMed  PubMed Central  Google Scholar 

  4. K. Bataineh and M. Al Janaideh, “Effect of different biocompatible implant materials on the mechanical stability of dental implants under excessive oblique load,” Clin. Implant Dentistry Relat. Res. 21, 1206–1217 (2019). https://doi.org/10.1111/cid.12858

    Article  Google Scholar 

  5. Sh.-W. Wu, Ch.-Ch. Lee, P.-Yu. Fu, and Sh.-Ch. Lin, “The effects of flute shape and thread profile on the insertion torque and primary stability of dental implants,” Med. Eng. Phys. 34, 797–805 (2012). https://doi.org/10.1016/j.medengphy.2011.09.021

    Article  PubMed  Google Scholar 

  6. C. Tirachaimongkol, P. Pothacharoen, P. Reichart, and P. Khongkhunthian, “Relation between the stability of dental implants and two biological markers during the healing period: A prospective clinical study,” Int. J. Implant Dentistry 2, 27 (2016). https://doi.org/10.1186/s40729-016-0058-y

    Article  Google Scholar 

  7. S. Ersanli, C. Karabuda, F. Beck, and B. Leblebicioglu, “Resonance Frequency analysis of one- stage dental implant stability during the osseointegration period,” J. Periodontology 76, 1066–1071 (2005). https://doi.org/10.1902/jop.2005.76.7.1066

    Article  CAS  Google Scholar 

  8. A. Messias, P. Nicolau, and F. Guerra, “Titanium dental implants with different collar design and surface modifications: A systematic review on survival rates and marginal bone levels,” Clin. Oral Implants Res. 30, 20–48 (2019). https://doi.org/10.1111/clr.13389

    Article  PubMed  Google Scholar 

  9. T. V. Furtsev, A. A. Koshmanova, G. M. Zeer, E. D. Nikolaeva, I. N. Lapin, T. N. Zamay, and A. S. Kichkailo, “Laser cleaning improves stem cell adhesion on the dental implant surface during peri-implantitis treatment,” Dentistry J. 11, 30 (2023). https://doi.org/10.3390/dj11020030

    Article  Google Scholar 

  10. A. Messias, P. Nicolau, and F. Guerra, “Titanium dental implants with different collar design and surface modifications: A systematic review on survival rates and marginal bone levels,” Clin. Oral Implants Res. 30, 20–48 (2019). https://doi.org/10.1111/clr.13389

    Article  PubMed  Google Scholar 

  11. M. Annunziata and L. Guida, “The effect of titanium surface modifications on dental implant osseointegration,” in Biomaterials for Oral and Craniomaxillofacial Applications (S. Karger AG, 2015), Vol. 17, pp. 62–77. https://doi.org/10.1159/000381694

    Book  Google Scholar 

  12. M. Bereznai, I. Pelsöczi, Z. Tóth, K. Turzó, M. Radnai, Z. Bor, and A. Fazekas, “Surface modifications induced by ns and sub-ps excimer laser pulses on titanium implant material,” Biomaterials 24, 4197–4203 (2003). https://doi.org/10.1016/s0142-9612(03)00318-1

    Article  CAS  PubMed  Google Scholar 

  13. Yo. Xie, J. Li, Z. Yu, and Q. Wei, “Nano modified SLA process for titanium implants,” Mater. Lett. 186, 38–41 (2017). https://doi.org/10.1016/j.matlet.2016.08.079

    Article  CAS  Google Scholar 

  14. K. A. Schlegel, C. Prechtl, T. Möst, C. Seidl, R. Lutz, and C. von Wilmowsky, “Osseointegration of SLActive implants in diabetic pigs,” Clin. Oral Implants Res. 24, 128–134 (2013). https://doi.org/10.1111/j.1600-0501.2011.02380.x

    Article  CAS  PubMed  Google Scholar 

  15. B. Mohammadi and E. Anbarzadeh, “Evaluation of viability and cell proliferation in bone and gingival on dental implant fixtures with active sandblasted and sandblasted surfaces by the cytotoxicity test method,” J. Biomimetics, Biomater. Biomed. Eng. 56, 165–172 (2022). https://doi.org/10.4028/p-gmmc8m

    Article  Google Scholar 

  16. B. Mohammadi, Z. Abdoli, and E. Anbarzadeh, “Investigation of the effect of abutment angle tolerance on the stress created in the fixture and screw in dental implants using finite element analysis,” J. Biomimetics, Biomater. Biomed. Eng. 51, 63–76 (2021). https://doi.org/10.4028/www.scientific.net/jbbbe.51.63

  17. L. Le Guéhennec, A. Soueidan, P. Layrolle, and Yv. Amouriq, “Surface treatments of titanium dental implants for rapid osseointegration,” Dental Mater. 23, 844–854 (2007). https://doi.org/10.1016/j.dental.2006.06.025

    Article  CAS  Google Scholar 

  18. M.-H. Kim, K. Park, K.-H. Choi, S.-H. Kim, S. Kim, Ch.-M. Jeong, and J.-B. Huh, “Cell adhesion and in vivo osseointegration of sandblasted/acid etched/anodized dental implants,” Int. J. Mol. Sci. 16, 10324–10336 (2015). https://doi.org/10.3390/ijms160510324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. S. Choi and J. Park, “Multifunctional effects of a modification of SLA titanium implant surface with strontium-containing nanostructures on immunoinflammatory and osteogenic cell function,” J. Biomed. Mater. Res. Part A 106, 3009–3020 (2018). https://doi.org/10.1002/jbm.a.36490

    Article  CAS  Google Scholar 

  20. G. Marenzi, F. Impero, F. Scherillo, J. Sammartino, A. Squillace, and G. Spagnuolo, “Effect of different surface treatments on titanium dental implant micro-morphology,” Materials 12, 733 (2019). https://doi.org/10.3390/ma12050733

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. B. A. J. A. van Oirschot, Ya. Zhang, H. Alghamdi, J. M. Cordeiro, B. E. Nagay, V. A. R. Barao, E. D. de Avila, and J. J. J. P. van den Beucken, “Surface engineering for dental implantology: Favoring tissue responses along the implant,” Tissue Eng. Part A 28, 555–572 (2022). https://doi.org/10.1089/ten.tea.2021.0230

    Article  CAS  PubMed  Google Scholar 

  22. X. Liu, P. Chu, and C. Ding, “Surface modification of titanium, titanium alloys, and related materials for biomedical applications,” Mater. Sci. Eng., R: Rep. 47, 49–121 (2004). https://doi.org/10.1016/j.mser.2004.11.001

    Article  CAS  Google Scholar 

  23. S. Ramesh, L. Karunamoorthy, and K. Palanikumar, “Measurement and analysis of surface roughness in turning of aerospace titanium alloy (gr5),” Measurement 45, 1266–1276 (2012). https://doi.org/10.1016/j.measurement.2012.01.010

    Article  ADS  Google Scholar 

  24. D. D. Deligianni, N. Katsala, S. Ladas, D. Sotiropoulou, J. Amedee, and Y. F. Missirlis, “Effect of surface roughness of the titanium alloy Ti–6Al–4V on human bone marrow cell response and on protein adsorption,” Biomaterials 22, 1241–1251 (2001). https://doi.org/10.1016/s0142-9612(00)00274-x

    Article  CAS  PubMed  Google Scholar 

  25. H.-J. Spies, “Surface engineering of aluminium and titanium alloys: An overview,” Surf. Eng. 26, 126–134 (2010). https://doi.org/10.1179/174329409x451146

    Article  CAS  Google Scholar 

  26. C. Morant, M. F. López, A. Gutiérrez, and J. A. Jiménez, “AFM and SEM characterization of non-toxic vanadium-free Ti alloys used as biomaterials,” Appl. Surf. Sci. 220, 79–87 (2003). https://doi.org/10.1016/s0169-4332(03)00746-3

    Article  ADS  CAS  Google Scholar 

  27. M. Kulkarni, A. Mazare, P. Schmuki, and A. Iglič, “Biomaterial surface modification of titanium and titanium alloys for medical applications,” in Nanomedicine, Ed. by A. Seifalian, A. de Mel, and D. M. Kalaskar (One Central Press, Manchester, 2014), p. 111.

    Google Scholar 

  28. M. Browne and P. J. Gregson, “Surface modification of titanium alloy implants,” Biomaterials 15, 894–898 (1994). https://doi.org/10.1016/0142-9612(94)90113-9

    Article  CAS  PubMed  Google Scholar 

  29. L. Ponsonnet, K. Reybier, N. Jaffrezic, V. Comte, C. Lagneau, M. Lissac, and C. Martelet, “Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour,” Mater. Sci. Eng., C 23, 551–560 (2003). https://doi.org/10.1016/s0928-4931(03)00033-x

    Article  Google Scholar 

  30. Yo.-S. Hong, M.-J. Kim, J.-S. Han, and I.-S. Yeo, “Effects of hydrophilicity and fluoride surface modifications to titanium dental implants on early osseointegration: An in vivo study,” Implant Dentistry 23, 529–533 (2014). https://doi.org/10.1097/ID.0000000000000131

  31. M. T. Mohammed, Z. A. Khan, and A. N. Siddiquee, “Surface modifications of titanium materials for developing corrosion behavior in human body environment: A review,” Procedia Mater. Sci. 6, 1610–1618 (2014). https://doi.org/10.1016/j.mspro.2014.07.144

    Article  CAS  Google Scholar 

Download references

ACKNOWKEDGMENTS

The authors thank Dorin Kasht Mana Company, the largest manufacturer of dental implant systems in Iran, and especially Dr. Ali Asgar Malek Altojjari, the founder of the company, for providing the information of the brand 3A.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bijan Mohammadi.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ehsan Anbarzadeh, Bijan Mohammadi Investigation of the Effects of Sandblasting, Acid Etching, and Anodizing Parameters in the SLA + Anodizing on the Surface Treatment of Titanium Dental Implant Fixtures. Phys. Metals Metallogr. 124, 1606–1619 (2023). https://doi.org/10.1134/S0031918X23600793

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X23600793

Keywords:

Navigation