Skip to main content
Log in

Onsager Reaction Field Theory for Two-Dimensional Spatially Anisotropic Heisenberg Ferromagnet with the x-Axis Long-Range Interaction

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The competition between the \(x\)-axis long-range interaction (which decays as \(J/{{r}^{p}}\) with the distance \(r\)) and the \(y\)-axis nearest-neighbor interaction \(\tilde {J}\) is studied for the two-dimensional spatially anisotropic Heisenberg ferromagnet within the frame of Onsager reaction field theory. For \(\alpha = \tilde {J}/J > 0\), there exists the phase transition at finite temperatures in the region \(1 < p < 3\); No finite-temperature transitions exist for \(p \geqslant 3\). It is found that the interplay between spatially anisotropic interactions has an influence on the thermodynamic quantities (such as spin susceptibility, correlation functions and correlation length) of the system. The crossover from effective one- to two-dimensional behavior is found at \(\alpha = {{\alpha }_{c}}(p)\), where \({{\alpha }_{c}}(p)\) is a decreasing function of the long-range parameter \(p\). For \(\alpha = 0.2\) and \(p = 1.655\), and taking \(J = 57.7K\), the critical temperature and susceptibility obtained by Onsager reaction field theory are in agreement with the results from the experimental studies of the perovskites \({\text{P}}{{{\text{r}}}_{{{\text{0}}{\text{.5}}}}}{{{\text{S}}}_{{{\text{r0}}{\text{.5}}}}}{\text{Mn}}{{{\text{O}}}_{{\text{3}}}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. P. Richerme, Zh.-X. Gong, A. Lee, C. Senko, J. Smith, M. Foss-Feig, S. Michalakis, A. V. Gorshkov, and C. Monroe, “Non-local propagation of correlations in quantum systems with long-range interactions,” Nature 511, 198–201 (2014). https://doi.org/10.1038/nature13450

    Article  ADS  CAS  Google Scholar 

  2. J. G. Bohnet, B. C. Sawyer, J. W. Britton, M. L. Wall, A. M. Rey, M. Foss-Feig, and J. J. Bollinger, “Quantum spin dynamics and entanglement generation with hundreds of trapped ions,” Science 352, 1297–1301 (2016). https://doi.org/10.1126/science.aad9958

    Article  ADS  MathSciNet  CAS  Google Scholar 

  3. S. Fey, S. C. Kapfer, and K. P. Schmidt, “Quantum criticality of two-dimensional quantum magnets with long-range interactions,” Phys. Rev. Lett. 122, 17203 (2019). https://doi.org/10.1103/physrevlett.122.017203

    Article  ADS  CAS  Google Scholar 

  4. N. D. Mermin and H. Wagner, “Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models,” Phys. Rev. Lett. 17, 1133–1136 (1966). https://doi.org/10.1103/physrevlett.17.1133

    Article  ADS  CAS  Google Scholar 

  5. P. Bruno, “Absence of spontaneous magnetic order at nonzero temperature in one- and two-dimensional Heisenberg and xy systems with long-range interactions,” Phys. Rev. Lett. 87, 137203 (2001). https://doi.org/10.1103/physrevlett.87.137203

    Article  ADS  CAS  Google Scholar 

  6. A. Campa, T. Dauxois, D. Fanelli, and S. Ruffo, Physics of Long-Range Interacting Systems (Oxford Univ. Press, Oxford, 2014). https://doi.org/10.1093/acprof:oso/9780199581931.001.0001

    Book  Google Scholar 

  7. J. de Sousa, “Phase diagram in the quantum xy model with long-range interactions,” Eur. Phys. J. B 43, 93–96 (2005). https://doi.org/10.1140/epjb/e2005-00031-9

    Article  ADS  CAS  Google Scholar 

  8. L. S. Campana, L. De Cesare, U. Esposito, M. T. Mercaldo, and I. Rabuffo, “Field-induced quantum critical point in planar Heisenberg ferromagnets with long-range interactions: Two-time Green’s function framework,” Phys. Rev. B 82, 24409 (2010). https://doi.org/10.1103/physrevb.82.024409

    Article  ADS  Google Scholar 

  9. M. F. Maghrebi, Zh.-X. Gong, and A. V. Gorshkov, “Continuous symmetry breaking in 1D long-range interacting quantum systems,” Phys. Rev. Lett. 119, 23001 (2017). https://doi.org/10.1103/physrevlett.119.023001

    Article  ADS  MathSciNet  CAS  Google Scholar 

  10. N. Defenu, A. Codello, S. Ruffo, and A. Trombettoni, “Criticality of spin systems with weak long-range interactions,” J. Phys. A: Math. Theor. 53, 143001 (2020). https://doi.org/10.1088/1751-8121/ab6a6c

    Article  ADS  MathSciNet  Google Scholar 

  11. M. Katzer, W. Knorr, R. Finsterhölzl, and A. Carmele, “Long-range interaction in an open boundary-driven Heisenberg spin lattice: A far-from-equilibrium transition to ballistic transport,” Phys. Rev. B 102, 125101 (2020). https://doi.org/10.1103/physrevb.102.125101

    Article  ADS  CAS  Google Scholar 

  12. Yu. Chen, X. Zhang, W. Li, and J. Chen, “Onsager reaction field theory applied to the phase diagram of Heisenberg chain with ferromagnetic long-range interaction and antiferromagnetic nearest-neighbor interaction,” Int. J. Mod. Phys. B 35, 2150080 (2021). https://doi.org/10.1142/s0217979221500806

    Article  ADS  MathSciNet  CAS  Google Scholar 

  13. J. Ren, W. You, and A. M. Oleś, “Quantum phase transitions in a spin-1 antiferromagnetic chain with long-range interactions and modulated single-ion anisotropy,” Phys. Rev. B 102, 24425 (2020). https://doi.org/10.1103/physrevb.102.024425

    Article  ADS  CAS  Google Scholar 

  14. R. Yousefjani and A. Bayat, “Mobility edge in long-range interacting many-body localized systems,” Phys. Rev. B 107, 45108 (2023). https://doi.org/10.1103/physrevb.107.045108

    Article  ADS  CAS  Google Scholar 

  15. A. K. Pramanik and A. Banerjee, “Critical behavior at paramagnetic to ferromagnetic phase transition in Pr0.5Sr0.5MnO3: A bulk magnetization study,” Phys. Rev. B 79, 214426 (2009). https://doi.org/10.1103/physrevb.79.214426

    Article  ADS  Google Scholar 

  16. L. Zhang, J. Fang, J. Fan, M. Ge, L. Ling, C. Zhang, L. Pi, S. Tan, and Yu. Zhang, “Critical behavior of the half-doped perovskite Pr0.5Sr0.5CoO3 − δ,” J. Alloys Compd. 588, 294–299 (2014). https://doi.org/10.1016/j.jallcom.2013.10.216

    Article  CAS  Google Scholar 

  17. R. P. Madhogaria, E. M. Clements, V. Kalappattil, M. H. Phan, H. Srikanth, R. Das, N. T. Dang, D. P. Kozlenko, and N. S. Bingham, “Metamagnetism and kinetic arrest in a long-range ferromagnetically ordered multicaloric double perovskite Y2CoMnO6,” J. Magn. Magn. Mater. 507, 166821 (2020). https://doi.org/10.1016/j.jmmm.2020.166821

    Article  CAS  Google Scholar 

  18. C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Ya. Xia, T. Cao, W. Bao, C. Wang, Yu. Wang, Z. Q. Qiu, R. J. Cava, S. G. Louie, J. Xia, and X. Zhang, “Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals,” Nature 546, 265–269 (2017). https://doi.org/10.1038/nature22060

    Article  ADS  CAS  Google Scholar 

  19. B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. Mcguire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, and X. Xu, “Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit,” Nature 546, 270–273 (2017). https://doi.org/10.1038/nature22391

    Article  ADS  CAS  Google Scholar 

  20. Yu. Deng, Yi. Yu, Yi. Song, J. Zhang, N. Z. Wang, Z. Sun, Ya. Yi, Yi. Z. Wu, S. Wu, J. Zhu, J. Wang, X. H. Chen, and Yu. Zhang, “Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2,” Nature 563, 94–99 (2018). https://doi.org/10.1038/s41586-018-0626-9

    Article  ADS  CAS  PubMed  Google Scholar 

  21. M. Bonilla, S. Kolekar, Yu. Ma, H. C. Diaz, V. Kalappattil, R. Das, T. Eggers, H. R. Gutierrez, M.-H. Phan, and M. Batzill, “Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates,” Nat. Nanotechnol. 13, 289–293 (2018). https://doi.org/10.1038/s41565-018-0063-9

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Ya. Wen, Z. Liu, Yu. Zhang, C. Xia, B. Zhai, X. Zhang, G. Zhai, C. Shen, P. He, R. Cheng, L. Yin, Yu. Yao, M. Getaye Sendeku, Z. Wang, X. Ye, C. Liu, C. Jiang, C. Shan, Yo. Long, and J. He, “Tunable room-temperature ferromagnetism in two-dimensional Cr2Te3,” Nano Lett. 20, 3130–3139 (2020). https://doi.org/10.1021/acs.nanolett.9b05128

    Article  ADS  CAS  Google Scholar 

  23. J. Girovsky, J. Nowakowski, Md. E. Ali, M. Baljozovic, H. R. Rossmann, T. Nijs, E. A. Aeby, S. Nowakowska, D. Siewert, G. Srivastava, C. Wäckerlin, J. Dreiser, S. Decurtins, S. Liu, P. M. Oppeneer, T. A. Jung, and N. Ballav, “Long-range ferrimagnetic order in a two-dimensional supramolecular Kondo lattice,” Nat. Commun. 8, 15388 (2017). https://doi.org/10.1038/ncomms15388

    Article  ADS  CAS  PubMed Central  Google Scholar 

  24. G. M. Wysin, “Onsager reaction-field theory for magnetic models on diamond and hcp lattices,” Phys. Rev. B 62, 3251–3258 (2000). https://doi.org/10.1103/physrevb.62.3251

    Article  ADS  CAS  Google Scholar 

  25. L. Siurakshina, D. Ihle, and R. Hayn, “Theory of magnetic order in the three-dimensional spatially anisotropic Heisenberg model,” Phys. Rev. B 61, 14601–14606 (2000). https://doi.org/10.1103/physrevb.61.14601

    Article  ADS  CAS  Google Scholar 

  26. A. W. Sandvik and R. R. P. Singh, “High-Energy magnon dispersion and multimagnon continuum in the two-dimensional Heisenberg antiferromagnet,” Phys. Rev. Lett. 86, 528–531 (2001). https://doi.org/10.1103/physrevlett.86.528

    Article  ADS  CAS  Google Scholar 

  27. W. Zheng, J. Oitmaa, and C. J. Hamer, “Phase diagram of the Shastry-Sutherland antiferromagnet,” Phys. Rev. B 65, 14408 (2001). https://doi.org/10.1103/physrevb.65.014408

    Article  ADS  Google Scholar 

  28. S. Yunoki and S. Sorella, “Resonating valence bond wave function for the two-dimensional fractional spin liquid,” Phys. Rev. Lett. 92, 157003 (2004). https://doi.org/10.1103/physrevlett.92.157003

    Article  ADS  CAS  Google Scholar 

  29. A. A. Katanin and V. Yu. Irkhin, “Magnetic order and spin fluctuations in low-dimensional insulating systems,” Phys.-Usp. 50, 613 (2007). https://doi.org/10.1070/PU2007v050n06ABEH006313

    Article  CAS  Google Scholar 

  30. P. Hauke, T. Roscilde, V. Murg, J. Ignacio Cirac, and R. Schmied, “Modified spin-wave theory with ordering vector optimization: spatially anisotropic triangular lattice and J 1 J 2 J 3 model with Heisenberg interactions,” New J. Phys. 13, 075017 (2011). https://doi.org/10.1088/1367-2630/13/7/075017

    Article  ADS  CAS  Google Scholar 

  31. D. J. J. Farnell, R. Darradi, R. Schmidt, and J. Richter, “Spin-half Heisenberg antiferromagnet on two archimedian lattices: From the bounce lattice to the maple-leaf lattice and beyond,” Phys. Rev. B 84, 104406 (2011). https://doi.org/10.1103/physrevb.84.104406

    Article  ADS  Google Scholar 

  32. L. Yuan, Yu. Zhao, B. Li, Yi. Song, Yu. Xia, B. Liu, J. Wang, and Yu. Li, “Possible coexistence of short-range resonating valence bond and long-range stripe correlations in the spatially anisotropic triangular-lattice quantum magnet Cu2(OH)3NO3,” Phys. Rev. B 106, 85119 (2022). https://doi.org/10.1103/physrevb.106.085119

    Article  ADS  CAS  Google Scholar 

  33. L. Onsager, “Electric moments of molecules in liquids,” J. Am. Chem. Soc. 58, 1486–1493 (1936). https://doi.org/10.1021/ja01299a050

    Article  CAS  Google Scholar 

  34. M. P. Eastwood and D. E. Logan, “Onsager reaction field theory of a spatially anisotropic Heisenberg model,” Phys. Rev. B 52, 9455–9461 (1995). https://doi.org/10.1103/physrevb.52.9455

    Article  ADS  CAS  Google Scholar 

  35. M. E. Gouvêa, A. S. T. Pires, and G. M. Wysin, “Onsager reaction field theory for the three-dimensional anisotropic xy model,” Phys. Rev. B 58, 2399–2402 (1998). https://doi.org/10.1103/physrevb.58.2399

    Article  ADS  Google Scholar 

  36. A. S. T. Pires, “Onsager reaction field theory of the one-dimensional ferromagnet with long-range interactions,” Phys. Rev. B 53, 5123–5124 (1996). https://doi.org/10.1103/physrevb.53.5123

    Article  ADS  CAS  Google Scholar 

  37. M. Matsuura, Y. Endoh, H. Hiraka, K. Yamada, A. S. Mishchenko, N. Nagaosa, and I. V. Solovyev, “Classical and quantum spin dynamics in the fcc antiferromagnet NiS2 with frustration,” Phys. Rev. B 68, 94409 (2003). https://doi.org/10.1103/physrevb.68.094409

    Article  ADS  Google Scholar 

  38. S. V. Tyablikov, Methods in the Quantum Theory of Magnetism (Springer, 2013). https://doi.org/10.1007/978-1-4899-7182-1

    Book  Google Scholar 

  39. M. V. Medvedev, “Onsager reaction-field approximation for a ferromagnet with a single-ion anisotropy,” Phys. Met. Metallogr. 103, 12–22 (2007). https://doi.org/10.1134/s0031918x07010024

    Article  ADS  Google Scholar 

  40. H. Nakano and M. Takahashi, “Quantum Heisenberg model with long-range ferromagnetic interactions,” Phys. Rev. B 50, 10331–10334 (1994). https://doi.org/10.1103/physrevb.50.10331

    Article  ADS  CAS  Google Scholar 

  41. H. Nakano and M. Takahashi, “Magnetic properties of quantum Heisenberg ferromagnets with long-range interactions,” Phys. Rev. B 52, 6606–6610 (1995). https://doi.org/10.1103/physrevb.52.6606

    Article  ADS  CAS  Google Scholar 

  42. V. Yu. Irkhin, A. A. Katanin, and M. I. Katsnelson, “On the self-consistent spin-wave theory of frustrated Heisenberg antiferromagnets,” J. Phys.: Condens. Matter 4, 5227 (1992). https://doi.org/10.1088/0953-8984/4/22/019

    Article  ADS  CAS  Google Scholar 

  43. L. Wojtczak and T. Balcerzak, “Reaction field approximation for inhomogeneous ferromagnets,” Phys. Status Solidi (b) 116, 217–225 (1983). https://doi.org/10.1002/pssb.2221160126

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the Science and Technology Program of Guangzhou, China (202002030274).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Chen.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zepeng Zhou, Chen, Y. & Li, W. Onsager Reaction Field Theory for Two-Dimensional Spatially Anisotropic Heisenberg Ferromagnet with the x-Axis Long-Range Interaction. Phys. Metals Metallogr. 124, 1716–1732 (2023). https://doi.org/10.1134/S0031918X23600744

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X23600744

Keywords:

Navigation