Skip to main content
Log in

Predicting the Concentration Dependence of the Surface Tension of Ternary Systems

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

A comparative analysis of semi-empirical methods based on the Kohler, Bonnier, and Toop models for predicting the surface tension (ST) of ternary systems has been performed. Surface tension–concentration dependence calculations have been carried out in the indium–tin–lead and indium–tin–gallium systems. The ternary indium–tin–lead system is characterized by the fact that the excess surface tension isotherms of all the side binary melts are symmetrically shaped with respect to the equimolar composition, and such systems are called symmetric. In the ternary indium–tin–gallium system, the excessive surface tension isotherms of side binary indium–gallium and tin–gallium systems have pronounced asymmetry with respect to the equimolar composition, and such systems are called asymmetric. It has been shown that a method based on the Kohler model rather precisely describes the concentration dependence of the surface tension of symmetric ternary systems. However, this method does not predict the concentration dependence of the surface tension of asymmetric systems. It has been revealed that the Bonnier and Toop models can predict the surface tension–concentration dependence for asymmetric ternary systems with strong asymmetry in the excess surface tension isotherms of two side binary systems independently of the degree of complexity in these isotherms within overall error of experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. J. W. Gibbs, Elementary Principles in Statistical Mechanics: Developed with Especial Reference to the Rational Foundation of Thermodynamics (Charles Scribner’s Sons, New York, 1902).

    Google Scholar 

  2. E. A. Guggenheim, Modern Thermodynamics by the Methods of Willard Gibbs (Methuen & Co., London, 1933).

    Google Scholar 

  3. A. I. Rusanov, Phase Equilibria and Surface Phenomena (Khimiya, Leningrad, 1967) [in Russian].

    Google Scholar 

  4. B. B. Alchagirov, L. Kh. Afaunova, V. G. Gorchkhanov, R. Kh. Dadashev, F. F. Dyshekova, and T. M. Taova, “The instrument for joint measurement of surface tension and the electronic work function in the liquid metal systems with participation of components with high vapor pressure,” Izv. Akad. Nauk, Ser. Fiz. 76 (13), 33–36 (2012).

    Google Scholar 

  5. B. B. Alchagirov, R. Kh. Dadashev, Kh. B. Khokonov, F. F. Dyshekova, O. Kh. Kyasova, V. N. Lesev, and T. M. Taova, “Integration to educational practice of new inventions and patents. Part 2. Instruments and methods for measurement of surface tension of liquid-metallic melts,” Izv. Kabardino-Balkarskogo Gos. Univ. 9 (3), 66–76 (2019).

    Google Scholar 

  6. B. B. Alchagirov, D. Kh. Al’berdieva, R. Kh. Dadashev, A. Kh. Khibiev, and D. Z. Elimkhanov, “Instrument for studying the effect of gas atmosphere on the surface tension of metals and alloys,” Vestn. Akad. Nauk Chechenskoi Resp., No. 4, 10–15 (2016).

  7. B. B. Alchagirov, D. Kh. Al’berdieva, R. Kh. Arkhestov, V. G. Gorchkhanov, R. Kh. Dadashev, F. F. Dyshekova, and T. M. Taova, “Device for joint measurement of superficial tension and work of electron output of liquid-metal systems with participation of components with high elasticity of saturated steam of metals and alloys,” RF Patent No. 2511277 C2 (2014).

  8. R. Kh. Dadashev, R. A. Kutuev, and V. A. Sozaev, Surface Properties of Lead-, Tin-, Indium-, and Cadmium-Based Alloys (Nauka, Moscow, 2016) [in Russian].

    Google Scholar 

  9. D. A. Kambolov, A. Z. Kashezhev, R. A. Kutuev, M. Kh. Ponezhev, V. A. Sozaev, and A. Kh. Shermetov, “Polytherms of the density and surface tension of a zinc–aluminium–molybdenum–magnesium melt,” Bull. Russ. Acad. Sci.: Phys. 78, 785–787 (2014). https://doi.org/10.3103/S1062873814080152

    Article  CAS  Google Scholar 

  10. K. M. Elekoeva, Yu. N. Kasumov, R. A. Kutuev, A. R. Manukyants, M. Kh. Ponezhev, V. A. Sozaev, and B. D. Khastsaev, “Polytherms of the wetting angles of zinc and Serbian bronze on tungsten–cobalt hard alloys,” J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 11, 1042–1045 (2017). https://doi.org/10.1134/S1027451017050251

    Article  CAS  Google Scholar 

  11. Z. Moser, W. Gasior, K. Bukat, J. Pstruš, R. Kisiel, J. Sitek, K. Ishida, and I. Ohnuma, “Pb-Free solders: Part III. Wettability testing of Sn–Ag–Cu–Bi alloys with Sb,” J. Phase Equilib. Diffus. 28, 433–438 (2007). https://doi.org/10.1007/s11669-007-9156-0

    Article  CAS  Google Scholar 

  12. P. Fima, “Surface tension and density of liquid Sn–Ag–Cu alloys,” Int. J. Mater. Res. 103, 1455–1461 (2012). https://doi.org/10.3139/146.110819

    Article  CAS  Google Scholar 

  13. V. N. Eremenko and M. N. Vasiliu, “Classification of liquid metal systems by types of isotherms of surface tension,” Ukr. Khim. Zh. 38 (2), 118–121 (1972).

    CAS  Google Scholar 

  14. V. I. Nizhenko and A. I. Floka, Surface Tension of Metals and Alloys (Metallurgiya, Moscow, 1981) [in Russian].

    Google Scholar 

  15. S. I. Popel’, Surface Phenomena in Melts (Metallurgiya, Moscow, 1994) [in Russian].

    Google Scholar 

  16. S. Gao, K. Jiao, and J. Zhang, “Review of viscosity prediction models of liquid pure metals and alloys,” Philos. Mag. 99, 853–868 (2019). https://doi.org/10.1080/14786435.2018.1562281

    Article  CAS  Google Scholar 

  17. D. K. Belashchenko, “Computer simulation of liquid metals,” Phys.-Usp. 56, 1176–1216 (2013). https://doi.org/10.3367/UFNe.0183.201312b.1281

    Article  CAS  Google Scholar 

  18. M. Laffitte, J. -P. Bros, and C. Bergman, “Enthalpies de formation des alliages ternaires liquides étain–gallium–indium,” Bull. Soc. Chim. Belges 81, 163–169 (1972). https://doi.org/10.1002/bscb.19720810113

    Article  CAS  Google Scholar 

  19. R. Kh. Dadashev, Thermodynamics of Surface Phenomena (Fizmatlit, Moscow, 2007) [in Russian].

    Google Scholar 

  20. R. X. Dadashev, Kh. I. Ibragimov, and B. C. Savvin, “Prediction of surface tension of multicomponent systems,” in Surface Properties of Melts (Naukova Dumka, Kiev, 1982), pp. 7–11 [in Russian].

    Google Scholar 

  21. R. Kh. Dadashev, “Prediction of physicochemical properties of multicomponent metallic melts,” Rasplavy, No. 6, 72–84 (1994).

    Google Scholar 

  22. A. A. Ofitserov, A. A. Zhukhovitskii, and P. P. Pugachevich, “Surface tension of ideal ternary metallic melts,” Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 9, 5–10 (1966).

  23. R. Kh. Dadashev, Kh. B. Khokonov, Kh. I. Ibragimov, D. Z. Elimkhanov, and R. A. Kutuev, “Surface tension and molar volumes of ternary melts of alkali metals,” in Proc. All-Russ. Sci. Conf. (Complex Research Inst. Ross. Akad. Nauk, 2003), pp. 105–114 [in Russian].

  24. R. Kh. Dadashev and D. Z. Elimkhanov, “Comparative analysis of methods for forecasting surface tension of multicomponent metal alloys,” Vestn. Akad. Nauk Chechenskoi Resp., No. 1, 23–28 (2021). https://doi.org/10.25744/vestnik.2021.52.1.003

  25. R. S. Dzhambulatov, R. Kh. Dadashev, and D. Z. Elimkhanov, “Theoretical models for prediction of surface tension of 1,4-dioxane–acetone–water solutions,” Vestn. Akad. Nauk Chechenskoi Resp., No. 1, 5–8 (2015).

  26. R. Kh. Dadashev, R. A. Kutuev, D. Z. Elimkhanov, and Z. I. Bichueva, “Surface tension of indium–tin–gallium melts,” Russ. J. Phys. Chem. A 81, 1734–1737 (2007). https://doi.org/10.1134/S0036024407110039

    Article  CAS  Google Scholar 

  27. R. Kh. Dadashev, Kh. I. Ibragimov, and S. M. Yushaev, “Surface properties of indium–tin and thallium–bismuth melts,” Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., No. 1, 121–122 (1984).

  28. Kh. I. Ibragimov and B. Kh. Paskacheva, Thermophysical Properties of Metallic and Polymer Melts (Intermet Inzhiniring, Moscow, 2006) [in Russian].

    Google Scholar 

  29. B. B. Alchagirov, “Surface properties of alkali metals and binary metallic systems,” Doctoral Dissertation in Physics and Mathematics (Kabardino-Balkarskii Gos. Univ., Nal’chik, 1992) [in Russian].

  30. F. Kohler and G. H. Findenegg, “Zur Berechnung der Thermodynamischen Daten eines ternären Systems aus den zugehörigen binären Systemen,” Monatsh. Chem. Verw. Teile Anderer Wiss. 96, 1228–1251 (1965). https://doi.org/10.1007/BF00904272

    Article  CAS  Google Scholar 

  31. E. Bonnier and R. Caboz, “The estimation of free energy of mixing certain ternary liquid metals alloys,” Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences 250, 527–529 (1960).

    CAS  Google Scholar 

  32. G. Toop, “Predicting ternary activities using binary data,” Trans. Metall. Soc. AIME 233, 850–854 (1965).

    CAS  Google Scholar 

  33. A. G. Morachevskii and E. G. Firsova, Physical Chemistry: Heterogeneous Systems: Textbook, 2nd ed. (Lan’, St. Petersburg, 2015).

Download references

Funding

This work was supported by regular institutional funding, and no additional grants were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Z. Elimkhanov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadashev, R.K., Elimkhanov, D.Z. & Khazbulatov, Z.L. Predicting the Concentration Dependence of the Surface Tension of Ternary Systems. Phys. Metals Metallogr. 124, 422–427 (2023). https://doi.org/10.1134/S0031918X23600331

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X23600331

Keywords:

Navigation