Skip to main content
Log in

A Study of the Structure and Magnetic Properties of the Soft Magnetic 80 Chromium Permalloy Manufactured by Additive Technology

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The effects of heat treatment on the structure and magnetic properties of the 80NHS grade permalloy produced by selective laser melting (SLM) of gas-atomized powder are presented in comparison with the properties of the rolled 80NHS alloy. Ring samples either produced by SLM or machined from rolled metal have been studied. It has been established that the magnetic properties of the SLM samples are inferior to the properties of samples produced by thermomechanical processing because the structure of the additively manufactured alloy is characterized by fine grains and a large number of nonmetallic inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. I. B. Kekalo and B. A. Samarin, Physical Metals Science of Precision Alloys: Alloys with Special Magnetic Properties (Metallurgiya, Moscow, 1989).

    Google Scholar 

  2. E. A. Perigo, J. Jacimovic, F. García Ferré, and L. M. Scherf, “Additive manufacturing of magnetic materials,” Addit. Manuf. 30, 100870 (2019). https://doi.org/10.1016/j.addma.2019.100870

    Article  CAS  Google Scholar 

  3. D. Goll, D. Schuller, G. Martinek, T. Kunert, J. Schurr, C. Sinz, T. Schubert, T. Bernthaler, H. Riegel, and G. Schneider, “Additive manufacturing of soft magnetic materials and components,” Addit. Manuf. 27, 428–429 (2019). https://doi.org/10.1016/j.addma.2019.02.021

    Article  CAS  Google Scholar 

  4. C. Mikler, V. Chaudhary, T. Borkar, V. Soni, D. Jaeger, X. Chen, R. Contieri, R. V. Ramanujan, and R. Banerjee, “Laser additive manufacturing of magnetic materials,” JOM 3, 532–543 (2017). https://doi.org/10.1007/s11837-017-2257-2

    Article  CAS  Google Scholar 

  5. C. Mikler, V. Chaudhary, V. Soni, B. Gwalani, R. V. Ramanujan, and R. Banerjee, “Tuning the phase stability and magnetic properties of laser additively processed Fe–30% Ni soft magnetic alloys,” Mater. Lett. 199, 88–92 (2017). https://doi.org/10.1016/j.matlet.2017.04.054

    Article  CAS  Google Scholar 

  6. M. Garibaldi, I. Ashcroft, N. Hillier, S. A. C. Harmon, and R. Hague, “Relationship between laser energy input, microstructures and magnetic properties of selective laser melted Fe–6.9 wt % Si soft magnets,” Mater. Charact. 143, 144–151 (2018). https://doi.org/10.1016/j.matchar.2018.01.016

    Article  CAS  Google Scholar 

  7. R. Conteri, T. Borkar, S. Nag, D. Jaeger, X. Chen, R. V. Ramanujan, and R. Banerjee, “Laser additive processing of Fe–Si–B–Cu–Nb magnetic alloys,” J. Manuf. Processes 29, 175–181 (2017). https://doi.org/10.1016/j.jmapro.2017.07.029

    Article  Google Scholar 

  8. H. Y. Jung, S. J. Choi, K. G. Prashanth, M. Stoica, S. Scudino, S. Yi, U. Kuhn, D. H. Kim, K. B. Kim, and J. H. Eckert, “Fabrication of Fe-based bulk metallic glass by selective laser melting: A parameter study,” Mater. Des. 86, 703–708 (2015). https://doi.org/10.1016/j.matdes.2015.07.145

    Article  CAS  Google Scholar 

  9. J. M. Lamarre and F. Bernier, “Permanent magnets produced by cold spray additive manufacturing for electric engines,” J. Thermal Spray Technol. 28, 1709–1717 (2019). https://doi.org/10.1007/s11666-019-00917-6

    Article  CAS  Google Scholar 

  10. R. Hilzinger and W. Rodewald, Magnetic Materials: Fundamentals, Products, Properties, and Applications (Vacuumschmelze, Hanau, 2013).

  11. GOST (State Standard) 10994–74: Precision alloys. Grades, 1975.

  12. GOST (State Standard) 10160–75: Magnetically soft precision alloys. Specifications, 1976.

  13. M.-S. Pham, B. Dovgyy, P. A. Hooper, C. M. Gourlay, and A. Piglione, “The role of side-branching in microstructure development in laser powder-bed fusion,” Nat. Commun. 11, 000749 (2020). https://doi.org/10.1038/s41467-020-14453-3

    Article  CAS  Google Scholar 

  14. K. Saeidi, X. Gao, Y. Zhong, and Z. J. Shen, “Hardened austenite steel with columnar sub-grain structure formed by laser melting,” Mater. Sci. Eng., A 625, 221–229 (2015). https://doi.org/10.1016/j.msea.2014.12.018

    Article  CAS  Google Scholar 

  15. M. V. Staritsyn, P. A. Kuznetsov, S. N. Petrov, and M. S. Mikhatslov, “Composite structure as a strengthening factor of stainless austenitic chromium–nickel additive steel,” Phys. Met. Metallogr. 121, 337–343 (2020). https://doi.org/10.1134/S0031918X20040146

    Article  CAS  Google Scholar 

  16. A. A. Deev, P. A. Kuznetsov, and S. N. Petrov, “Anisotropy of mechanical properties and its correlation with the structure of the stainless steel 316L produced by the SLM method,” Phys. Procedia 83, 789–796 (2016). https://doi.org/10.1016/j.phpro.2016.08.081

    Article  CAS  Google Scholar 

  17. P. A. Kuznetsov, A. A. Zisman, S. N. Petrov, and I. S. Goncharov, “Structure and mechanical properties of austenitic 316L steel produced by selective laser melting,” Russ. Metall. 2016, 930–934 (2016). https://doi.org/10.1134/S0036029516100104

    Article  Google Scholar 

  18. V. A. Karkhin, Thermal Processes at Welding (Izd-vo Politekh. Univ., St. Petersburg, 2013).

    Google Scholar 

  19. B. Zhang, N. E. Fenineche, H. Liao, and C. Coddet, “Microstructure and magnetic properties of Fe–Ni alloy fabricated by selective laser melting Fe/Ni mixed powders,” J. Mater. Sci. Technol. 29, 757–760 (2013). https://doi.org/10.1016/j.jmst.2013.05.001

    Article  CAS  Google Scholar 

  20. A. K. Mazeeva, M. V. Staritsyn, V. V. Bobyr, S. A. Manninen, P. A. Kuznetsov, and V. N. Klimov, “Magnetic properties of Fe–Ni permalloy produced by selective laser,” J. Alloys Compd. 814, 152315 (2020). https://doi.org/10.1016/j.jallcom.2019.152315

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation Conducting research by world-class scientific laboratories (project no. 21-73-30019, https://rscf.ru/project/21-73-30019/) and by the world-class scientific and educational center Russian Arctic: new materials, technologies and research methods. Experimental studies were carried out with the equipment of the Center for Collective Use (CCU) with unique equipment Composition, structure and properties of structural and functional materials of the NRC Kurchatov Institute—CRISM Prometey with financial support of the Ministry of Science and Higher Education of Russian Federation agreement no. 13.CKP.21.0014. Unique identifier: RF-2296.61321X0014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Zhukov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Golovnya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukov, A.S., Manninen, S.A., Tit, M.A. et al. A Study of the Structure and Magnetic Properties of the Soft Magnetic 80 Chromium Permalloy Manufactured by Additive Technology. Phys. Metals Metallogr. 124, 334–340 (2023). https://doi.org/10.1134/S0031918X23600173

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X23600173

Keywords:

Navigation