Skip to main content
Log in

The Effect of Milling with Combined Surfactants on the Magnetic Properties and Microstructure of Submicron Sm2Fe17N3 Powders

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The results of the application of a combination of several surfactants in preparing submicron hard magnetic Sm2Fe17N3 powders by milling in a centrifugal mill are reported. Along with methyl caproate, to protect the powder against oxidation, the efficiency of siloxane has been studied. The application of the combined surfactants allowed us to increase both the (BH)max of the Sm2Fe17N3 powder to 23.6 MG Oe and its corrosion resistance. The effect of milling kinetics on the angular dependence of the coercive force Hc has been determined. Information on the primary mechanism of magnetization reversal of the powders has been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. S. Suzuki, T. Miura, and M. Kawasaki, “Sm2Fe17Nx Bonded Magnets with High Performance,” IEEE Trans. Magn. 29, 2815–2817 (1993).

    Article  CAS  Google Scholar 

  2. K. Makita and S. Hirosawa, “Coercivity of Zn evaporation-coated Sm2Fe17Nx fine powder and its bonded magnets,” J. Alloys Compd. 260, 236–241 (1997). https://doi.org/10.1016/S0925-8388(97)00155-2

    Article  CAS  Google Scholar 

  3. M. Tokita, “Trends in advanced SPS spark plasma sintering systems and technology: Functionally gradient materials and unique synthetic processing methods from next generation of powder technology,” J. Soc. Powder Technol., Jpn. 30, 790–804 (1993). https://doi.org/10.4164/sptj.30.11_790

    Article  CAS  Google Scholar 

  4. D. Zhang, M. Yue, and J. Zhang, “Structure and magnetic properties of Sm2Fe17Nx sintering magnets prepared by spark plasma sintering,” J. Rare Earths 24, 325–328 (2006). https://doi.org/10.1016/S1002-0721(07)60392-5

    Article  Google Scholar 

  5. T. Saito, “Structures and magnetic properties of Sm–Fe–N bulk magnets produced by the spark plasma sintering method,” J. Mater. Res. 22, 3130–3136 (2007). https://doi.org/10.1557/JMR.2007.0386

    Article  CAS  Google Scholar 

  6. D. Prabhu, H. Sepehri-Amin, C. L. Mendis, T. Ohkubo, K. Hono, and S. Sugimoto, “Enhanced coercivity of spark plasma sintered Zn-bonded Sm–Fe–N magnets,” Scr. Mater. 67, 153–156 (2012). https://doi.org/10.1016/j.scriptamat.2012.04.001

    Article  CAS  Google Scholar 

  7. T. Saito, “Production of Sm–Fe–N bulk magnets by spark plasma sintering method,” J. Magn. Magn. Mater. 369, 184–188 (2014). https://doi.org/10.1016/j.jmmm.2014.06.034

    Article  CAS  Google Scholar 

  8. M. Matsuura, T. Shiraiwa, N. Tezuka, S. Sugimoto, T. Shoji, N. Sakuma, and K. Haga, “High coercive Zn-bonded Sm–Fe–N magnets prepared using fine Zn particles with low oxygen content,” J. Magn. Magn. Mater. 452, 243–248 (2018). https://doi.org/10.1016/j.jmmm.2017.12.059

    Article  CAS  Google Scholar 

  9. K. Machida, A. Nakamoto, Yo. Nakatani, G. Adachi, and A. Onodera, “New processing routes for the preparation of Sm2Fe17 M x (M ≡ C and/or N) materials,” J. Alloys Compd. 222, 18–22 (1995). https://doi.org/10.1016/0925-8388(94)04905-X

    Article  CAS  Google Scholar 

  10. K. Takagi, H. Nakayama, K. Ozaki, and K. Kobayashi, “Fabrication of high-performance Sm–Fe–N isotropic bulk magnets by a combination of high-pressure compaction and current sintering,” J. Magn. Magn. Mater. 324, 1337–1341 (2012). https://doi.org/10.1016/j.jmmm.2011.11.035

    Article  CAS  Google Scholar 

  11. H. Nakayama, K. Takagi, K. Ozaki, and K. Kobayashi, “Correlation between microstructure and magnetic properties in Sm2Fe17N3 magnet prepared by pulsed current sintering,” Mater. Trans. 53, 1962–1966 (2012). https://doi.org/10.2320/matertrans.M2012169

    Article  CAS  Google Scholar 

  12. K. Takagi, H. Nakayama, and K. Ozaki, “Microstructural behavior on particle surfaces and interfaces in Sm2Fe17N3 powder compacts during low-temperature sintering,” J. Magn. Magn. Mater. 324, 2336–2341 (2012). https://doi.org/10.1016/j.jmmm.2012.02.021

    Article  CAS  Google Scholar 

  13. R. Soda, K. Takagi, M. Jinno, W. Yamaguchi, and K. Ozaki, “Anisotropic Sm2Fe17N3 sintered magnets without coercivity deterioration,” AIP Adv. 6, 115108 (2016). https://doi.org/10.1063/1.4967364

    Article  CAS  Google Scholar 

  14. K. Takagi, R. Soda, M. Jinno, and W. Yamaguchi, “Possibility of high-performance Sm2Fe17N3 sintered magnets by low-oxygen powder metallurgy process,” J. Magn. Magn. Mater. 506, 166811 (2020).

    Article  CAS  Google Scholar 

  15. T. Mukai and T. Fujimoto, “Kerr microscopy observation of nitrogenated Sm2Fe17 intermetallic compounds,” J. Magn. Magn. Mater. 10, 165–173 (1992). https://doi.org/10.1016/0304-8853(92)90250-R

    Article  Google Scholar 

  16. W. Yamaguchi, R. Soda, and K. Takagi, “Metal-coated Sm2Fe17N3 magnet powders with an oxide-free direct metal-metal interface,” J. Magn. Magn. Mater. 498, 166101 (2020). https://doi.org/10.1016/j.jmmm.2019.166101

    Article  CAS  Google Scholar 

  17. A. Hosokawa, W. Yamaguchi, K. Suzuki, and K. Takagi, “Influences of microstructure on macroscopic crystallinity and magnetic properties of Sm–Fe–N fine powder produced by jet-milling,” J. Alloys Compd. 869, 159288 (2021). https://doi.org/10.1016/j.jallcom.2021.159288

    Article  CAS  Google Scholar 

  18. P. A. P. Wendhausen, B. Gebel, D. Eckert, and K.‑H. Müller, “Effect of milling on the magnetic and microstructural properties of Sm2Fe17Nx permanent magnets,” J. Appl. Phys. 75, 6018–6020 (1994). https://doi.org/10.1063/1.355494

    Article  CAS  Google Scholar 

  19. K. Kobayashi, R. Skomski, and J. M. D. Coey, “Dependence of coercivity on particle size in Sm2Fe17N3 powders,” J. Alloys Compd. 222, 1–7 (1995). https://doi.org/10.1016/0925-8388(94)04902-5

    Article  CAS  Google Scholar 

  20. J. L. Wang, W. Z. Li, X. P. Zhong, Y. H. Gao, W. D. Qin, N. Tang, W. G. Lin, J. X. Zhang, R. W. Zhao, Q. W. Yan, and F. Yang, “Study on high performance Sm2Fe17Nx magnets,” J. Alloys Compd. 222, 23–26 (1995). https://doi.org/10.1016/0925-8388(94)04906-8

    Article  CAS  Google Scholar 

  21. G. Hadjipanayis, D. Neil, and A. Gabay, “Ultrafine Sm–Fe–N particles prepared by planetary ball milling,” EPJ Web Conf. 40, 06006 (2013). https://doi.org/10.1051/epjconf/20134006006

  22. M. Matsuura, Yu. Nishijima, N. Tezuka, S. Sugimoto, T. Shoji, and N. Sakuma, “Increase of energy products of Zn-bonded Sm–Fe–N magnets with low oxygen content,” J. Magn. Magn. Mater. 467, 64–68 (2018). https://doi.org/10.1016/j.jmmm.2018.07.064

    Article  CAS  Google Scholar 

  23. S. Tajima, T. Hattori, and Y. Kato, “Influence of milling conditions on magnetic properties of Sm2Fe17N3 particles,” IEEE Trans. Magn. 31, 3701–3703 (1995). https://doi.org/10.1109/20.489700

    Article  CAS  Google Scholar 

  24. H. Izumi, K. Machida, A. Shiomi, M. Iguchi, K. Noguchi, and G. Adachi, “Preparation of Sm2Fe17Nx powders and their bonded magnets with high-performance permanent magnetic characteristics,” Chem. Mater. 9, 2759–2767 (1997). https://doi.org/10.1021/cm970036z

    Article  CAS  Google Scholar 

  25. L. Zhao, N. G. Akdogan, and G. C. Hadjipanayis, “Hard magnetic Sm2Fe17N3 flakes nitrogenized at lower temperature,” J. Alloys Compd. 554, 147–149 (2013). https://doi.org/10.1016/j.jallcom.2012.11.153

    Article  CAS  Google Scholar 

  26. X. B. Ma, L. Z. Li, S. Q. Liu, B. Y. Hu, J. Z. Han, C. S. Wang, H. L. Du, Y. C. Yang, and J. B. Yang, “Anisotropic Sm–Fe–N particles prepared by surfactant-assisted grinding method,” J. Alloys Compd. 612, 110–113 (2014). https://doi.org/10.1016/j.jallcom.2014.05.142

    Article  CAS  Google Scholar 

  27. D. A. Kolodkin, A. G. Popov, and V. S. Gaviko, “Enhancement of the coercive force of Sm2Fe17N3 powders via surfactant added mechanical milling,” Phys. Met. Metallogr. 122, 547–558 (2021). https://doi.org/10.1134/S0031918X21060053

    Article  CAS  Google Scholar 

  28. D. A. Kolodkin, A. G. Popov, A. V. Protasov, V. S. Gaviko, D. Yu. Vasilenko, S. Kavita, D. B. Prabhu, and R. Gopalan, “Magnetic properties of Sm2 + αFe17Nx powders prepared from bulk and strip-cast alloys,” J. Magn. Magn. Mater. 518, 167416 (2021). https://doi.org/10.1016/j.jmmm.2020.167416

    Article  CAS  Google Scholar 

  29. A. G. Popov, V. S. Gaviko, N. N. Shchegoleva, O. A. Golovnia, T. I. Gorbunova, and G. C. Hadjipanayis, “Effect of addition of esters of fatty acids on the microstructure and properties of sintered Nd–Fe–B magnets produced by PLP,” J. Magn. Magn. Mater. 386, 134–140 (2015). https://doi.org/10.1016/j.jmmm.2015.03.069

    Article  CAS  Google Scholar 

  30. G. L. Witucki, “A silane primer: Chemistry and applications of aikoxy silanes,” J. Coat. Technol. 65, 57–60 (1993).

    CAS  Google Scholar 

  31. E. I. Kondorskii, “Hysteresis of ferromagnets,” Zh. Eksp. Teor. Fiz. 10, 420–440 (1940).

    CAS  Google Scholar 

  32. E. C. Stoner, “Ferromagnetism: Magnetization curves,” Rep. Prog. Phys. 13, 83–183 (1950). https://doi.org/10.1088/0034-4885/13/1/304

    Article  CAS  Google Scholar 

  33. E. P. Wohlfarth, “Hard magnetic materials,” Adv. Phys. 8, 87–224 (1959). https://doi.org/10.1080/00018735900101178

    Article  Google Scholar 

  34. Ya. S. Shur, G. S. Kandaurova, and L. G. Onoprienko, “Angular dependence of the coercive force in magnetically uniaxial ferromagnetic single crystals,” Sov. Phys. JETP 21, 292 (1965).

    Google Scholar 

  35. S. Shtrikman and D. Treves, “The coercive force and rotational hysteresis of elongated ferromagnetic particles,” J. Phys. Radium 20, 286–289 (1959). https://doi.org/10.1051/jphysrad:01959002002-3028600

    Article  Google Scholar 

Download references

Funding

This study was performed in terms of the state assignment of the Ministry of Science and Higher Education of the Russian Federation for the Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences (theme Magnit, no. АААА-А18-118020290129-5) and in terms of the Federal Academic Leadership Program Priority 2030. The study was performed using equipment at the Collective Access Centers of the Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences and Postovskii Institute of Organic Synthesis, Ural Branch, Russian Academy of Sciences (Spectroscopy and analysis of organic compounds).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Kolodkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Kolchugina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolodkin, D.A., Popov, A.G. & Gorbunova, T.I. The Effect of Milling with Combined Surfactants on the Magnetic Properties and Microstructure of Submicron Sm2Fe17N3 Powders. Phys. Metals Metallogr. 124, 263–270 (2023). https://doi.org/10.1134/S0031918X23600124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X23600124

Keywords:

Navigation