Skip to main content
Log in

Structural-Phase Changes of the Fe3C/Fe7C3/P-Phase/Cam Mechanocomposite at Heating

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The effect of the action of temperature on the structure and phase composition of an Fe3C/Fe7C3/P-phase/Cam composite obtained by mechanosynthesis of Fe–75 at % C has been studied by the methods of X‑ray diffraction, Mössbauer spectroscopy, thermogravimetric analysis, and differential scanning calorimetry. It is shown that the structural and phase changes at heating have a multistage character. In the temperature range 315–400°C crystallization of the paramagnetic P-phase with generation of Fe3C and/or Fe7C3 occur. In the course of heating to higher temperatures, complete decomposition of carbide Fe7C3 (in the range 450–550°C) and partial decomposition of Fe3C (at 600°C and above) are observed. After cooling from 800–1000°C the mechanocomposite consists of α-Fe, cementite Fe3C, and graphite. The phase transformations are accompanied by the processes of composite oxidation with the formation of Fe3O4 oxide and its subsequent reduction. The P-phase is a disorded amorphous carbide Fe1 – xCx, which is characterized by magnetic ordering at the temperature of liquid nitrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. X. Zhao, R. J. Sanderson, L. MacEachern, R. A. Dunlap, and M. N. Obrovac, “Mössbauer and electrochemical investigations of carbon-rich Fe1 – xCx films,” Electrochim. Acta 170, 16–24 (2015). https://doi.org/10.1016/j.electacta.2015.04.116

    Article  CAS  Google Scholar 

  2. X. L. Dong, Z. D. Zhang, Q. F. Xiao, X. G. Zhao, Y. C. Chuang, S. R. Jin, W. M. Sun, Z. J. Li, Z. X. Zheng, and H. Yang, “Characterization of ultrafine γ-Fe(C), α-Fe (C) and Fe3C particles synthesized by arc-discharge in methane,” J. Mater. Sci. 33, 1915–1919 (1998). https://doi.org/10.1023/A:1004369708540

    Article  CAS  Google Scholar 

  3. T. Tanaka, S. Nasu, K. N. Ishihara, and P. H. Shingu, “Mechanical alloying of the high carbon Fe–C system,” J. Less-Common Met. 171, 237–247 (1991). https://doi.org/10.1016/0022-5088(91)90147-V

    Article  CAS  Google Scholar 

  4. S. J. Campbell, G. M. Wang, A. Calka, and W. A. Kaczmarek, “Ball milling of Fe75–C25: Formation of Fe3C and Fe7C3,” Mater. Sci. Eng., A 226–228, 75–79. https://doi.org/10.1016/S0921-5093(97)80027-5

  5. A. A. Al-Joubori and C. Suryanarayana, “Synthesis of Fe-C alloys by mechanical alloying,” in Materials Science and Technology Conf. and Exhibition (2014), pp. 509–516.

  6. G. A. Dorofeev, “Mechanisms, kinetics, and thermodynamics of the mechanical alloying in systems of iron with sp elements,” Doctoral Dissertation in Physics and Mathematics (Physical and Engineering Institute, Ural Branch, Russ. Acad. Sci., Izhevsk, 2006) [in Russian].

  7. V. A. Volkov, I. A. El’kin, A. V. Zagainov, A. V. Protasov, and E. P. Elsukov, “Dynamic equilibria of phases in the processes of the mechanosynthesis of an alloy with composition Fe72.6C24.5O1.1N1.8,” Phys. Met. Metallogr. 115, 557–565 (2014). https://doi.org/10.1134/S0031918X14060143

    Article  Google Scholar 

  8. E. P. Yelsukov, G. A. Dorofeev, and V. M. Fomin, “Phase composition and structure of the Fe(100 – X)C(X); X = 5–25 at % powders after mechanical alloying and annealing,” J. Metastable Nanocryst. Mater. 1516, 445–450 (2003). https://doi.org/10.4028/www.scientific.net/JMNM.15-16.445

    Article  Google Scholar 

  9. E. P. Yelsukov and G. A. Dorofeev, “Mechanical alloying in binary Fe–M (M = C, B, Al, Si, Ge, Sn) systems,” J. Mater. Sci. 39, 5071–5079 (2004). https://doi.org/10.1023/B:JMSC.0000039187.46158.f6

    Article  CAS  Google Scholar 

  10. V. M. Prokhorov, R. H. Bagramov, V. D. Blank, and G. I. Pivovarov, “Pulse acoustic microscopy characterization of the elastic properties of nanostructured metal-nanocarbon composites,” Ultrasonics 48, 578–582 (2008). https://doi.org/10.1016/j.ultras.2008.07.014

    Article  CAS  Google Scholar 

  11. F. C. Robles-Hernandez, “Production and characterization of Fe–C graphite and Fe–C fullerene composites produced by different mechanical alloying techniques,” J. Metall. 10 (2), 107–118 (2004).

    Google Scholar 

  12. O. Boshko, O. Nakonechna, N. Belyavina, M. Dashevskyi, and S. Revo, “Nanocrystalline Fe–C composites obtained by mechanical alloying of iron and carbon nanotubes,” Adv. Powder Technol. 28, 964–972 (2017). https://doi.org/10.1016/j.apt.2016.12.026

    Article  CAS  Google Scholar 

  13. P. A. Borisova, S. S. Agafonov, M. S. Blanter, and V. A. Somenkov, “Neutron diffraction study of the interaction of iron with amorphous fullerite,” Phys. Solid State 56, 199–202 (2014). https://doi.org/10.1134/S1063783414010090

    Article  CAS  Google Scholar 

  14. B. S. Meher, R. Saha, and D. Chaira, “Fabrication of MWCNTs reinforced iron metal matrix composite by powder metallurgy: effects of wet and dry milling,” J. Alloys Compd. 872, 159688 (2021). https://doi.org/10.1016/j.jallcom.2021.159688

    Article  CAS  Google Scholar 

  15. V. A. Barinov, V. A. Tsurin, and V. T. Surikov, “Study of mechanically synthesized carbide Fe7C3,” Phys. Met. Metallogr. 110, 474–484 (2010). https://doi.org/10.1134/S0031918X10110074

    Article  Google Scholar 

  16. S. F. Lomayeva, “Structural and phase transformations, thermal stability, and magnetic and corrosive properties of nanocrystalline iron-based alloys obtained by mechanoactivation in organic media,” Phys. Met. Metallogr. 104, 388–407 (2007). https://doi.org/10.1134/S0031918X07100092

    Article  Google Scholar 

  17. N. S. Larionova, R. M. Nikonova, A. L. Ul’yanov, and V. I. Lad’yanov, “Effect of a carbon polymorph (fullerite, graphite) on the phase composition of mechanocomposites with iron,” Phys. Met. Metallogr. 122, 696–703 (2021). https://doi.org/10.1134/S0031918X21050082

    Article  CAS  Google Scholar 

  18. N. S. Larionova, R. M. Nikonova, A. L. Ul’yanov, V. I. Lad’yanov, and L. V. Kamaeva, “Structural-phase composition of iron-containing high carbon composites with fullerite and graphite obtained by mechanosynthesis,” J. Alloys Compd. 909, 164749 (2022). https://doi.org/10.1016/j.jallcom.2022.164749

    Article  CAS  Google Scholar 

  19. N. S. Larionova, R. M. Nikonova, A. L. Ul’yanov, M. I. Mokrushina, and V. I. Lad’yanov, “Deformation-induced structural-phase transformations during mechanosynthesis of Fe-fullerite in toluene,” Phys. Met. Metallogr. 120, 858–866 (2019). https://doi.org/10.1134/S0031918X19090072

    Article  CAS  Google Scholar 

  20. V. A. Glebov, O. I. Popova, A. S. Bakulina, A. P. Chukanov, Yu. D. Yagodkin, and I. V. Shchetinin, “Structural transformations in steel 12Kh12M1BFR due to high-energy milling with additives of fullerenes and carbon nanotubes,” Met. Sci. Heat Treat. 51, 569–572 (2009). https://doi.org/10.1007/s11041-010-9212-y

    Article  CAS  Google Scholar 

  21. H. C. Eckstrom and W. A. Adcock, “A new iron carbide in hydrocarbon synthesis catalysts,” J. Am. Chem. Soc. 72, 1042–1043 (1950). https://doi.org/10.1021/ja01158a526

    Article  CAS  Google Scholar 

  22. F. H. Herbstein and J. A. Snyman, “Identification of Eckstrom–Adcock iron carbide As Fe7C3,” Inorg. Chem. 3, 894–896 (1964). https://doi.org/10.1021/ic50016a026

    Article  CAS  Google Scholar 

  23. H. Okamoto, “The C–Fe (carbon–iron) system,” J. Phase Equil. 13, 543–565 (1992). https://doi.org/10.1007/BF02665767

    Article  CAS  Google Scholar 

  24. E. V. Voronina, N. V. Ershov, A. L. Ageev, and Yu. A. Babanov, “Regular algorithm for the solution of the inverse problem in Mössbauer spectroscopy,” Phys. Status Solidi 160, 625–634 (1990). https://doi.org/10.1002/pssb.2221600223

    Article  CAS  Google Scholar 

  25. G. M. da Costa, E. de Grave, P. M. A. De Bakker, and R. E. Vandenberghe, “Influence of nonstoichimetry and the presence of mghemite on the Mössbauer spectrum of magnetite,” Clay Clay Miner. 43, 656–668 (1995). https://doi.org/10.1346/CCMN.1995.0430602

    Article  CAS  Google Scholar 

  26. V. D. Tret’yakov and V. I. Putlyaev, Introduction to the Chemistry of Solid-Phase Materials (Mosk. Univ., Moscow, 2006) [in Russian].

    Google Scholar 

  27. K. Mori, T. Okada, Ya. Takagii, Yo. Takada, and T. Mizoguchi, “Oxidation and disproportionation of wustite studied by Mössbauer spectroscopy,” Jpn. J. Appl. Phys. 38, L189 (1999). https://doi.org/10.1143/JJAP.38.L189

    Article  CAS  Google Scholar 

  28. V. G. Voskoboinikov, V. A. Kudrin, and A. M. Yakushev, General Metallurgy (Akademkniga, Moscow, 2005) [in Russian].

    Google Scholar 

  29. V. I. Berdnikov and Yu. A. Gudim, “Chemical reactions in the reduction of iron from oxides,” Steel Transl. 50, 773–778 (2020). https://doi.org/10.3103/S0967091220110042

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank M.A. Eremina for the data obtained by the DSC/TGA method, L.V. Kamaeva for performing the heating by the DSC method, and O.N. Nemtsova and G.A. Dorofeev for discussion of the results of Mössbauer spectroscopy.

Funding

The work is supported by the research project no. 121030100001-3 and is carried out using the equipment of “The Center of the physical and physicochemical methods of analysis, investigation of the properties and characteristics of the surface, nanostructures, materials and products”, the Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Larionova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larionova, N.S., Nikonova, R.M., Lad’yanov, V.I. et al. Structural-Phase Changes of the Fe3C/Fe7C3/P-Phase/Cam Mechanocomposite at Heating. Phys. Metals Metallogr. 124, 271–278 (2023). https://doi.org/10.1134/S0031918X23600094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X23600094

Keywords:

Navigation