Skip to main content
Log in

The Influence of Nickel Addition on Properties of Sn–4.0Zn–0.7Cu Lead-Free Solder

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

This research investigated changes in the properties of Sn–4.0Zn–0.7Cu (SZC407) solder alloy after doping with 0.5 wt % Ni. Specimens of SZC407 and SZC407–0.5Ni solder alloys were characterized in terms of chemical composition, microstructure, mechanical properties, and melting point. The results showed that the addition 0.5 wt % Ni had no significant effect on the ultimate tensile strength and elongation of SZC407 solder alloy but the formation of phases of the intermetallic compound (IMC) CuZnNi in the solder matrix increased the microhardness of the alloy. These IMC phases improved the strength of the solder matrix by the dispersion strengthening mechanism. The fracture surface of both solder alloys was typical of the ductile fracture mode. The microstructure of the solder alloy was improved by the distribution in the solder matrix of new CuZnNi IMC phases. However, the addition of 0.5 wt % Ni slightly increased the solidus and liquidus temperatures, pasty range and peak temperature of the SZC407 solder alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. K. Suganuma, “Advances in lead-free electronics soldering,” Curr. Opin. Solid State Mater. Sci. 5, 55–64 (2001). https://doi.org/10.1016/S13590286(00)00036-X

    Article  ADS  CAS  Google Scholar 

  2. A. E. Hammad, “Investigation of microstructure and mechanical properties of novel Sn0.5Ag0.7Cu solders containing small amount of Ni,” Mater. Des. 50, 108–116 (2013). https://doi.org/10.1016/j.matdes.2013.03.010

    Article  CAS  Google Scholar 

  3. A. A. El-Daly and A. E. Hammad, “Development of high strength Sn0.7Cu solders with the addition of small amount of Ag and In,” J. Alloys Compd. 509, 8554–8560 (2011). https://doi.org/10.1016/j.jallcom.2011.05.119

    Article  CAS  Google Scholar 

  4. H. R. Kotadia, O. Mokhtari, M. P. Clode, M. A. Green, and S. H. Mannan, “Intermetallic compound growth suppression at high temperature in SAC solders with Zn addition on Cu and NiP substrates,” J. Alloys Compd. 511, 176–188 (2012). https://doi.org/10.1016/j.jallcom.2011.09.024

    Article  CAS  Google Scholar 

  5. S. Y. Chang, C. C. Jain, T. H. Chuang, L. P. Feng, and L. C. Tsao, “Effect of addition of TiO2 nanoparticles on the microstructure, microhardness and interfacial reactions of Sn3.5AgXCu solder,” Mater. Des. 32, 4720–4727 (2011). https://doi.org/10.1016/j.matdes.2011.06.044

    Article  CAS  Google Scholar 

  6. H. Kang, M. Lee, D. Sun, S. Pae, and J. Park, “Formation of octahedral corrosion products in Sn–Ag flip chip solder bump,” Scr. Mater. 108, 126–129 (2015). https://doi.org/10.1016/j.scriptamat.2015.06.034

    Article  CAS  Google Scholar 

  7. S. H. Huh, K. S. Kim, and K. Suganuma, “Effect of Ag addition on the microstructural and mechanical properties of Sn–Cu eutectic solder,” Mater. Trans. 42, 739–744 (2001). https://doi.org/10.2320/matertrans.42.739

    Article  CAS  Google Scholar 

  8. M. Date, K. N. Tu, T. Shoji, M. Fujiyoshi, and K. Sato, “Interfacial reactions and impact reliability of Sn–Zn solder joints on Cu or electroless Au/Ni(P) bond-pads,” J. Mater. Res. 19, 2887–2896 (2004). https://doi.org/10.1557/JMR.2004.0371

    Article  ADS  CAS  Google Scholar 

  9. S. H. Chang and S. K. Wu, “Damping characteristics of Sn–3Ag–0.5Cu and Sn–37Pb solders studied by dynamic mechanical analysis,” Scr. Mater. 63, 957–960 (2010). https://doi.org/10.1016/j.scriptamat.2010.07.004

    Article  ADS  CAS  Google Scholar 

  10. C. Y. Chou and S. W. Chen, “Phase equilibria of the Sn–Zn–Cu ternary system,” Acta Mater. 54, 2393–2400 (2006). https://doi.org/10.1016/j.actamat.2006.01.014

    Article  ADS  CAS  Google Scholar 

  11. K. Suganuma and K. S. Kim, “Sn–Zn low temperature solder,” J. Mater. Sci.: Mater. Electron. 18, 121–127 (2007). https://doi.org/10.1007/978-0-387-48433-4_7

    Article  CAS  Google Scholar 

  12. M. Yamaguchi, T. Ichitsubo, E. Matsubara, H. Kimura, K. Sasamori, H. Irie, S. Kumamoto, and T. Anada, “Atomizing effect on Sn–Zn based solder alloy,” J. Jpn. Inst. Met. 70, 162–165 (2006). https://doi.org/10.2320/jinstmet.70.162

    Article  CAS  Google Scholar 

  13. Y. S. Kim, K. S. Kim, C. W. Hwang, and K. Suganuma, “Effect of composition and cooling rate on microstructure and tensile properties of Sn–Zn–Bi alloys,” J. Alloys Compd. 352, 237–245 (2003). https://doi.org/10.1016/S0925-8388(02)01168-4

    Article  CAS  Google Scholar 

  14. J. M. Song and K. L. Lin, “Behavior of intermetallics in liquid Sn–Zn–Ag solder alloys,” J. Mater. Res. 18, 2060–2067 (2003). https://doi.org/10.1557/JMR.2003.0290

    Article  ADS  CAS  Google Scholar 

  15. K. L. Lin and H. M. Hsu, “Sn–Zn–Al Pb-free solder—An inherent barrier solder for Cu contact,” J. Electron. Mater. 30, 1068–1072 (2001). https://doi.org/10.1007/s11664-001-0131-y

    Article  ADS  CAS  Google Scholar 

  16. D. Q. Yu, H. P. Xie, and L. Wang, “Investigation of interfacial microstructure and wetting property of newly developed Sn–Zn–Cu solders with Cu substrate,” J. Alloys Compd. 385, 119–125 (2004). https://doi.org/10.1016/j.jallcom.2004.04.129

    Article  CAS  Google Scholar 

  17. J. E. Lee, K. S. Kim, M. Inoue, J. Jiang, and K. Suganuma, “Effects of Ag and Cu addition on microstructural properties and oxidation resistance of Sn‒Zn eutectic alloy,” J. Alloys Compd. 454, 310–320 (2008). https://doi.org/10.1016/j.jallcom.2006.12.037

    Article  CAS  Google Scholar 

  18. A. A. El-Daly, A. E. Hammad, A. Fawzy, and D. A. Nasrallh, “Microstructure, mechanical properties, and deformation behavior of Sn–1.0Ag–0.5Cu solder after Ni and Sb additions,” Mater. Des. 43, 40–49 (2013). https://doi.org/10.1016/j.matdes.2012.06.058

    Article  CAS  Google Scholar 

  19. C. H. Wang and H. T. Shen, “Effects of Ni addition on the interfacial reaction between Sn–Cu solders and Ni substrate,” Intermetallics 18, 616–622 (2010). https://doi.org/10.1016/j.intermet.2009.10.018

    Article  CAS  Google Scholar 

  20. A. K. Gain and Y. C. Chan, “The influence of a small amount of Al and Ni nano-particles on the microstructure, kinetic and hardness of Sn–Ag–Cu solder on OSP-Cu pads,” Intermetallics 29, 48–55 (2012). https://doi.org/10.1016/j.intermet.2012.04.019

    Article  CAS  Google Scholar 

  21. F. X. Che, W. H. Zhu, S. W. P. Edith, X. W. Zhang, and X. R. Zhang, “The study of mechanical properties of Sn–Ag–Cu lead-free solders with different Ag contents and Ni doping under different strain rates and temperatures,” J. Alloys Compd. 507, 215–224 (2010). https://doi.org/10.1016/j.jallcom.2010.07.160

    Article  CAS  Google Scholar 

  22. H. Ma, H. Xie, and L. Wang, “Effect of a trace of Bi and Ni on the microstructure and wetting properties of Sn–Zn–Cu lead-free solder,” J. Mater. Sci. Technol. 23, 81–84 (2007).

    CAS  Google Scholar 

  23. Y. Lai, X. Hu, X. Jiang, and Y. Li, “Effect of Ni addition to Sn–0.7Cu solder alloy on thermal behavior, microstructure, and mechanical properties,” J. Mater. Eng. Perform. 27, 6564–6576 (2018). https://doi.org/10.1007/s11665-018-3734-7

    Article  CAS  Google Scholar 

  24. A. A. El-Daly and A. M. El-Taher, “Improved strength of Ni and Zn-doped Sn–2.0Ag–0.5Cu lead-free solder alloys under controlled processing parameters,” Mater. Des. 47, 607–641 (2013). https://doi.org/10.1016/j.matdes.2012.12.081

    Article  CAS  Google Scholar 

  25. A. E. Hammad, “Evolution of microstructure, thermal and creep properties of Ni-doped Sn–0.5Ag–0.7Cu low-Ag solder alloys for electronic applications,” Mater. Des. 52, 663–670 (2013). https://doi.org/10.1016/j.matdes.2013.05.102

    Article  MathSciNet  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to thank academician Thomas Duncan Coyne for improving the English in this paper.

Funding

This work was supported by the Faculty of Science Research Fund, Prince of Songkla University Contract no. 1-2565-02-002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phairote Sungkhaphaitoon.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panisara Sukhontapatipak, Phairote Sungkhaphaitoon The Influence of Nickel Addition on Properties of Sn–4.0Zn–0.7Cu Lead-Free Solder. Phys. Metals Metallogr. 124, 1597–1605 (2023). https://doi.org/10.1134/S0031918X23600082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X23600082

Keywords:

Navigation