Skip to main content
Log in

Research on the Choice of Cooling Method for a Rare-Earth Wrought Magnesium Alloy Considering Temperature Distribution, Hardness and Microstructure

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

A “hardenability” experiment which contained solution treatment followed by single-side quenching and aging afterward of a cylinder specimen was carried out to research on the choice of cooling method considering temperature distribution, hardness and microstructure for a newly developed high-strength heat resistant rare-earth wrought magnesium alloy Mg–Gd–Y–Zr–Ag–Er. The results revealed that the closer the sample was to the quenching surface, the faster the temperature decreased. The largest measured temperature difference was 320°C. The hardness was ranging from 76 to 86 HV in the quenched state, and 110 to 119 HV in the aged state. The various cooling rates had little effect on the hardness, the grains and precipitates of this kind of magnesium alloy, solution treatment followed by a lower cooling process like air cooling may be a better choice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. H. Wang and T. Wang, “Influence of hot rolling and solution treatment on the microstructure and mechanical properties of high-boron duplex stainless steel 0Cr21Ni5Ti–2B,” Met. Sci. Heat Treat. 63, 126–131 (2021). https://doi.org/10.1007/s11041-021-00658-w

    Article  CAS  Google Scholar 

  2. Z. Li, H. Wang, Yu. Zhao, L. Wu, F. Zhang, and Q. Shan, “Effect of progressive solid-solution treatment on microstructures, mechanical properties and impact abrasive wear behavior of alloyed high manganese steel,” Mater. Res. Express 9, 036512 (2022). https://doi.org/10.1088/2053-1591/ac5cad

    Article  ADS  CAS  Google Scholar 

  3. Yi. Sun, F. Jiang, H. Zhang, J. Su, and W. Yuan, “Residual stress relief in Al–Zn–Mg–Cu alloy by a new multistage interrupted artificial aging treatment,” Mater. Des. 92, 281–287 (2016). https://doi.org/10.1016/j.matdes.2015.12.004

    Article  CAS  Google Scholar 

  4. J.-S. Wang, Ch.-Ch. Hsieh, H.-H. Lai, Ch.-W. Kuo, P. T.-Yu. Wu, and W. Wu, “The relationships between residual stress relaxation and texture development in AZ31 Mg alloys via the vibratory stress relief technique,” Mater. Charact. 99, 248–253 (2015). https://doi.org/10.1016/j.matchar.2014.09.019

    Article  CAS  Google Scholar 

  5. H. Zengin, Yu. Turen, M. E. Turan, and F. Aydın, “Evolution of microstructure, residual stress, and tensile properties of Mg–Zn–Y–La–Zr magnesium alloy processed by extrusion,” Acta Metall. Sin. (Engl. Lett.) 32, 1309–1319 (2019). https://doi.org/10.1007/s40195-019-00901-7

  6. K. Asl, A. Tari, and F. Khomamizadeh, “Effect of deep cryogenic treatment on microstructure, creep and wear behaviors of AZ91 magnesium alloy,” Mater. Sci. Eng., A 523, 27–31 (2009). https://doi.org/10.1016/j.msea.2009.06.003

    Article  CAS  Google Scholar 

  7. D. Han, H. Chen, Q. Zang, Yu. Qian, H. Cui, L. Wang, J. Zhang, and Yu. Jin, “Effect of solution treatment on microstructure and properties of Mg–6Gd–3Y–1.5Zn–0.6Zr alloy,” Mater. Charact. 163, 110295 (2020). https://doi.org/10.1016/j.matchar.2020.110295

    Article  CAS  Google Scholar 

  8. J. Iwaszko and K. Kudła, “Microstructure, hardness, and wear resistance of AZ91 magnesium alloy produced by friction stir processing with air-cooling,” Int. J. Adv. Manuf. Technol. 116, 1309–1323 (2021). https://doi.org/10.1007/s00170-021-07474-9

    Article  Google Scholar 

  9. C. Wang, T. Luo, Yu. Liu, Q. Huang, and Yu. Yang, “Residual stress and precipitation of Mg–5Zn–3.5Sn–1Mn–0.5Ca–0.5Cu alloy with different quenching rates,” J. Magnesium Alloys 9, 604–612 (2021). https://doi.org/10.1016/j.jma.2020.02.021

    Article  CAS  Google Scholar 

  10. Q. Xie, Yu. Wu, T. Zhang, S. Peng, and Z. Yuan, “Effects of quenching cooling rate on residual stress and mechanical properties of a rare-earth wrought magnesium alloy,” Materials 15, 5627 (2022). https://doi.org/10.3390/ma15165627

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. C. Wang, T. Luo, J. Zhou, and Yu. Yang, “Effects of solution and quenching treatment on the residual stress in extruded ZK60 magnesium alloy,” Mater. Sci. Eng., A 722, 14–19 (2018). https://doi.org/10.1016/j.msea.2018.02.047

    Article  CAS  Google Scholar 

  12. D. Wang, P. Fu, L. Peng, Yi. Wang, and W. Ding, “Quench sensitivity characterization of a LPSO-phase containing Mg alloy,” Mater. Sci. Eng., A 749, 291–300 (2019). https://doi.org/10.1016/j.msea.2019.02.011

    Article  CAS  Google Scholar 

  13. J.-F. Li, D.-Ya. Liu, H. Ning, C. Liu, P.-Ch. Ma, Yo.‑L. Chen, and X.-H. Zhang, “Experimental quantification of “hardenability” of 2195 and 2050 Al–Li alloys by using cold-rolled sheets,” Mater. Charact. 137, 180–188 (2018). https://doi.org/10.1016/j.matchar.2018.01.037

    Article  CAS  Google Scholar 

  14. J. Yan, Q.-L. Pan, A.-D. Li, and W.-B. Song, “Flow behavior of Al–6.2Zn–0.70Mg–0.30Mn–0.17Zr alloy during hot compressive deformation based on Arrhenius and ANN models,” Trans. Nonferrous Met. Soc. China 27, 638–647 (2017). https://doi.org/10.1016/s1003-6326(17)60071-2

    Article  CAS  Google Scholar 

  15. Yu-X. Zhang, Yo.-P. Yi, Sh.-Q. Huang, and F. Dong, “Influence of quenching cooling rate on residual stress and tensile properties of 2A14 aluminum alloy forgings,” Mater. Sci. Eng., A 674, 658–665 (2016). https://doi.org/10.1016/j.msea.2016.08.017

    Article  CAS  Google Scholar 

  16. L. Xiao, G. Yang, H. Qin, J. Ma, and W. Jie, “Microstructure evolution and quench sensitivity characterizations of Mg–9.5Gd–0.9Zn–0.5Zr alloy,” Vacuum 181, 109651 (2020). https://doi.org/10.1016/j.vacuum.2020.109651

    Article  ADS  CAS  Google Scholar 

  17. H.-Yi. Li, C.-T. Zeng, M.-Sh. Han, J.-J. Liu, and X.‑Ch. Lu, “Time–temperature–property curves for quench sensitivity of 6063 aluminum alloy,” Trans. Nonferrous Met. Soc. China 23, 38–45 (2013). https://doi.org/10.1016/s1003-6326(13)62426-7

    Article  CAS  Google Scholar 

  18. J. S. Robinson, P. J. Tiernan, and J. F. Kelleher, “Effect of post-quench delay on stress relieving by cold compression for the aluminium alloy 7050,” Mater. Sci. Technol. 31, 409–417 (2015). https://doi.org/10.1179/1743284714y.0000000571

    Article  ADS  CAS  Google Scholar 

  19. J. Liu, F. Jiang, M. Tang, B. Liu, Yi. Sun, and H. Zhang, “Reduced residual stress and retained properties in Al–Zn–Mg–Cu alloys using a novel cladding quenching process,” J. Mater. Res. Technol. 9, 7201–7209 (2020). https://doi.org/10.1016/j.jmrt.2020.04.080

    Article  CAS  Google Scholar 

  20. X. Geng, Z. Cheng, S. Wang, C. Peng, A. Ullah, H. Wang, and G. Wu, “A data-driven machine learning approach to predict the hardenability curve of boron steels and assist alloy design,” J. Mater. Sci. 57, 10755–10768 (2022). https://doi.org/10.1007/s10853-022-07132-9

    Article  ADS  CAS  Google Scholar 

  21. B. Wang, Yo. Gao, and C. Liu, “Effect of multidirectional forging and ageing treatment on microstructure and mechanical properties of Mg–Gd–Y–Zr alloy,” Ordnance Mater. Sci. Eng. 41, 27–31 (2018).

    Article  Google Scholar 

  22. J.-F. Nie, “Precipitation and hardening in magnesium alloys,” Metall. Mater. Trans. A 43, 3891–3939 (2012). https://doi.org/10.1007/s11661-012-1217-2

    Article  CAS  Google Scholar 

  23. Yi. Huang, C. Liu, S. Jiang, Ya. Ma, Yi. Wan, and Z. Chen, “Dislocation-induced β' precipitation behavior and strength-ductility synergistic enhancement in Mg–Gd–Y–Zr–Ag alloy,” J. Alloys Compd. 944, 169187 (2023). https://doi.org/10.1016/j.jallcom.2023.169187

    Article  CAS  Google Scholar 

  24. Yi. Huang, C. Liu, Yi. Wan, S. Jiang, Yo. Gao, and Z. Chen, “Effect of dislocation-induced aging precipitate bands on creep resistance of Mg–Gd–Y–Zr–Ag alloy,” J. Alloys Compd. 960, 170633 (2023). https://doi.org/10.1016/j.jallcom.2023.170633

    Article  CAS  Google Scholar 

  25. L. Wang, J. Huang, Yo. Peng, and Yi. Wu, “Precipitates evolution in the heat affected zone of Mg–Gd–Y–Zr alloy in T6 condition during laser welding,” Mater. Charact. 154, 386–394 (2019). https://doi.org/10.1016/j.matchar.2019.06.004

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by The National Natural Science Foundation of China (nos. 51975596 and 52171115) and the Project of State Key Laboratory of High-Performance Complex Manufacturing, Central South University (no. ZZYJKT2020-13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunxin Wu.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiumin Xie, Wu, Y., Wu, Y. et al. Research on the Choice of Cooling Method for a Rare-Earth Wrought Magnesium Alloy Considering Temperature Distribution, Hardness and Microstructure. Phys. Metals Metallogr. 124, 1588–1596 (2023). https://doi.org/10.1134/S0031918X23600033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X23600033

Keywords:

Navigation