Skip to main content
Log in

The Influence of Production Technology on the Structure and Mechanical Properties of Niobium–Silicon–Aluminum Alloys

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Cast Nb–14 at % Si–9 at % Al alloys fabricated by self-propagating high-temperature synthesis (SHS) and by SHS followed by electric arc remelting have been investigated. A structure consisting of a solid solution of silicon and aluminum in niobium (NbSS), a Nb3Al intermetallic compound, and a β-Nb5(Si,Al)3 silicide formed in the alloy fabricated by SHS. Electric arc remelting suppressed the formation of the Nb3Al phase and resulted in the formation of a dispersed two-phase NbSS and β-Nb5(Si, Al)3 structure in the alloy. The increased volume fraction of NbSS and the dispersed structure formed after electric arc remelting in the alloy increase its fracture toughness to 14.8 ± 0.8 MPa m1/2 compared to 7.7 ± 0.8 MPa m1/2 for the SHS-prepared alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. I. L. Svetlov, “High-temperature Nb–Si composites,” Materialovedenie, No. 9, 29–38 (2010) [in Russian].

    Google Scholar 

  2. Yu. A. Kocherzhinsky, L. M. Yupko, and E. A. Shishkin, “State diagram Nb–Si,” Russ. Metall., No. 1, 206–211 (1980).

  3. Y. Kimura, Y. Mishima, H. Yamaoka, and N. Sekido, “Processing, microstructure, mechanical properties of Nb/Nb5Si3 two phase alloys,” Metal. Mater. Trans. A 36, 483–488 (2005). https://doi.org/10.1007/s11661-005-0161-9

    Article  Google Scholar 

  4. V. I. Yukhvid, M. I. Alymov, V. N. Sanin, D. E. Andreev, and N. V. Sachkova, “Self-propagating high-temperature synthesis of niobium silicide-based composite materials,” Inorg. Mater. 51, 1251–1257 (2015). https://doi.org/10.1134/S0020168515110151

    Article  CAS  Google Scholar 

  5. B. P. Bewlay, H. A. Lipsitt, M. R. Jackson, W. J. Reeder, and J. A. Sutliff, “Solidification processing of high temperature intermetallic eutectic-based alloys,” Mater. Sci. Eng., A 192193, 534–543 (1995). https://doi.org/10.1016/0921-5093(95)03299-1

    Article  Google Scholar 

  6. M. G. Mendiratta and D. M. Dimiduk, “Microstructures and mechanical behavior of two-phase niobium silicide-niobium alloys,” MRS Online Proc. Libr. 133, 441–446 (1989). https://doi.org/10.1557/PROC-133-441

    Article  Google Scholar 

  7. W.-Yo. Kim, H. Tanaka, A. Kasama, and Sh. Hanada, “Microstructure and room temperature fracture toughness of Nbss/Nb5Si3 in situ composites,” Intermetallics 9, 827–834 (2001). https://doi.org/10.1016/S0966-9795(01)00072-3

    Article  CAS  Google Scholar 

  8. S. Kashyap, C. S. Tiwary, and K. Chattopadhyay, “Microstructure and mechanical properties of oxidation resistant suction cast Nb–Si–Al alloy,” Mater. Sci. Eng., A 559, 74–85 (2013). https://doi.org/10.1016/j.msea.2012.08.027

    Article  CAS  Google Scholar 

  9. I. V. Sapegina, B. E. Pushkarev, S. A. Tereshkina, and V. I. Ladyanov, “Structure and properties of Nb–Si–Al hypoeutectic alloys obtained by aluminothermy at different cooling rates,” J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 15, 1345–1348 (2021). https://doi.org/10.1134/S1027451021060422

    Article  CAS  Google Scholar 

  10. J. C. Zhao, L. A. Peluso, M. R. Jackson, and L. Tan, “Phase diagram of the Nb–Al–Si ternary system,” J. Alloys Compd. 360, 183–188 (2003). https://doi.org/10.1016/S0925-8388(03)00524-3

    Article  CAS  Google Scholar 

  11. V. Raghavan, “State diagram Al–Nb–Si,” J. Phase Equilib. Diffus. 27 (2), 163–165 (2006). https://doi.org/10.1361/154770306X97272

    Article  CAS  Google Scholar 

  12. Sh. Qu, Ya. Han, and L. Sang, “Effects of alloying elements on phase stability in Nb–Si system intermetallics materials,” Intermetallics 15, 810–813 (2007). https://doi.org/10.1016/j.intermet.2006.10.044

    Article  CAS  Google Scholar 

  13. I. Papadimitriou, C. Uttonet, A. Scott, and P. Tsakiropoulos, “Ab initio study of the intermetallics in Nb–Si binary system,” Intermetallics 54, 125–132 (2014). https://doi.org/10.1016/j.intermet.2014.05.020

    Article  CAS  Google Scholar 

  14. E. V. Shelekhov and T. A. Sviridova, “Programs for X‑ray analysis of polycrystals,” Met. Sci. Heat Treat. 42, 309–313 (2000). https://doi.org/10.1007/BF02471306

    Article  CAS  Google Scholar 

  15. L. Kammerdiner and H. L. Luo, “Superconductivity in the Nb-rich Nb–AI alloys,” J. Appl. Phys. 43, 4728–4731 (1972). https://doi.org/10.1063/1.1660995

    Article  CAS  Google Scholar 

  16. N. A. Kuz’mina and Yu. A. Bondarenko, “The phase composition and structure of the niobium-silicon composite manufactured by directional solidication in the liquid metal cooler,” Tr. VIAM, No. 5, 19–27 (2016). https://doi.org/10.18577/2307-6046-2016-0-5-3-3

    Article  Google Scholar 

  17. C. Brukl, H. Nowotny, and F. Benesovsky, “Study of the ternary systems V–Al–Si, Nb–Al–Si, Cr–Al–Si, Mo–Al–Si, and Cr(Mo)–Al–Si,” Monatsh. Chem. 92, 967–980 (1961).

    Article  CAS  Google Scholar 

  18. V. M. Pan, V. I. Latysheva, O. G. Kulik, A. G. Popov, and E. N. Litvinenko, “State diagrams of Nb–NbAl3–Nb5Si3,” Russ. Metall., No. 4, 233–235 (1984).

  19. T. Murakami, S. Sasaki, K. Ichikawa, and A. Kitahara, “Microstructure, mechanical properties and oxidation behavior of Nb–Si–Al and Nb–Si–N powder compacts prepared by spark plasma sintering,” Intermetallics 9, 621–627 (2001). https://doi.org/10.1016/S0966-9795(01)00042-5

    Article  CAS  Google Scholar 

  20. S. Kashyap, C. S. Tiwary, and K. Chattopadhyay, “Microstructural and mechanical behavior study of suction cast Nb–Si binary alloys,” Mater. Sci. Eng., A 583, 188–198 (2013). https://doi.org/10.1016/j.msea.2013.06.045

    Article  CAS  Google Scholar 

  21. A. A. Chernov, Modern Crystallography, Vol. 3 (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  22. G. Shao, “Thermodynamic assessment of the Nb–Si–Al system,” Intermetallics 12, 655–664 (2004). https://doi.org/10.1016/j.intermet.2004.03.011

    Article  CAS  Google Scholar 

  23. N. Sekido, Yo. Kimura, S. Miura, and Yo. Mishima, “Solidification process and mechanical behavior of the Nb/Nb5Si3 two phase alloys in the Nb–Ti–Si system,” Mater. Trans. 45, 3264–3271 (2004). https://doi.org/10.2320/matertrans.45.3264

    Article  CAS  Google Scholar 

  24. B. R. Lawn, A. G. Evans, D. B. Marshall, “Elastic/plastic indentation damage in ceramics: the median/radial crack system,” J. Am. Ceram. Soc., No. 9, 533–538 (1981).

  25. R. A. Andrievskii and A. V. Ragulya, Nanostructural Materials (Akademiya, Moscow, 2005) [in Russian].

    Google Scholar 

  26. M. R. Jackson, B. P. Bewlay, R. G. Rowe, D. W. Skelly, and H. A. Lipsitt, “High-temperature refractory metal-intermetallic composites,” JOM 48, 39–44 (1996). https://doi.org/10.1007/BF03221361

    Article  CAS  Google Scholar 

  27. I. L. Svetlov, “High-temperature Nb–Si composites,” Materialovedenie, No. 10, 18–27 (2010).

    Google Scholar 

Download references

Funding

The study was carried out according to the subject of scientific research no. 121030100001-3 using equipment at “The Center for Physical and Physical-Chemical Methods of Analysis, Investigation of the Properties and Characteristics of a Surface, Nanostructures, Materials, and Products” of the Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences (the project unique identifier RFMEFI62119X0035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Sapegina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by T. Gapontseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sapegina, I.V., Lubnin, A.N. & Ladyanov, V.I. The Influence of Production Technology on the Structure and Mechanical Properties of Niobium–Silicon–Aluminum Alloys. Phys. Metals Metallogr. 124, 303–307 (2023). https://doi.org/10.1134/S0031918X22602050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X22602050

Keywords:

Navigation