Skip to main content
Log in

The Critical Temperature of Superconducting Aluminum Films

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The R(T) dependences of thin superconducting aluminum films deposited on leucosapphire and gallium arsenide substrates by electron beam sputtering and molecular beam epitaxy have been experimentally studied. Regardless of morphology, a noticeable increase in the critical temperature of the superconducting transition with a decrease in the film thickness is found. The effect is interpreted as a manifestation of the quantum size effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. A. Shalnikov, “Superconducting thin films,” Nature 142, 74 (1938).

    Article  CAS  Google Scholar 

  2. V. L. Ginzburg, “Concerning surface superconductivity,” JETP 47, 2318–2320 (1964).

    Google Scholar 

  3. C. J. Thomson and J. M. Blatt, “Shape resonances in superconductors—simplified theory,” Phys. Lett. 5 (1), 6–9 (1963).

    Article  Google Scholar 

  4. J. M. Blatt and C. J. Thomson, “Shape resonances in superconducting thin films,” Phys. Rev. Lett. 10 (8), 332–334 (1963).

    Article  Google Scholar 

  5. A. A. Shanenko, M. D. Croitoru, and F. M. Peeters, “Quantum-size effects on Tc in superconducting nanofilms,” Europhys. Lett. 76 (3), 498–504 (2006).

    Article  CAS  Google Scholar 

  6. A. A. Shanenko, M. D. Croitoru, and F. M. Peeters, “Oscillations of the superconducting temperature induced by quantum well states in thin metallic films: Numerical solution of the Bogoliubov–de Gennes equations,” Phys. Rev. B 75, 014519–014529 (2007).

  7. K. Yu. Arutyunov, V. V. Zavialov, E. A. Sedov, I. A. Golokolenov, A. A. Zarudneva, K. V. Shein, I. N. Trun’kin, A. L. Vasiliev, G. Konstantinidis, A. Stavrinidis, G. Stavrinidis, M. D. Croitoru, and A. A. Shanenko, “Nanoarchitecture: Toward quantum-size tuning of superconductivity,” Phys. Status Solidi 13 (1800317), 1–5 (2019).

    Google Scholar 

  8. B. G. Orr, H. M. Jaeger, and A. M. Goldman, “Transition-temperature oscillations in thin superconducting films,” Phys. Rev. Lett. 53 (21), 2046–2049 (1984).

    Article  CAS  Google Scholar 

  9. G. Yang, Z. Yan-Feng, B. Xin-Yu, H. Tie-Zhu, T. Zhe, Z. Li-Xin, Z. Wen-Guang, E. G. Wang, N. Qian, Z. Q. Qiu, J. Jin-Feng, Z. Zhong-Xian, and X. Qi-Kun, “Superconductivity modulated by quantum size effects,” Science 306, 1915–1917 (2004).

    Article  Google Scholar 

  10. A. A. Shanenko, M. D. Croitoru, M. Zgirski, F. M. Peeters, and K. Yu. Arutyunov, “Size dependent enhancement of superconductivity in nanowires,” Phys. Rev. B 74 (052502), 1–4 (2006).

    Article  Google Scholar 

  11. R. H. Parmenter, “Size effect in a granular superconductor,” Phys. Rev. 166 (2), 392–396 (1968).

    Article  Google Scholar 

  12. W. Roger and B. Abeles, “Superconductivity in granular aluminum films,” Phys. Rev. 168 (2), 444–450 (1967).

    Google Scholar 

  13. G. Deutscher, H. Fenichel, M. Gershenson, E. Grünbaum, and Z. Ovadyahu, “Transition to zero dimensionality in granular aluminum superconducting films,” J. Low Temp. Phys. 10 (1/2), 231–243 (1973).

    Article  CAS  Google Scholar 

  14. S. Matsuo, H. Sugiura, and S. Noguchi, “Superconducting transition temperature of aluminum, indium, and lead fine particles,” J. Low Temp. Phys. 15 (5/6), 481–491 (1974).

    Article  CAS  Google Scholar 

  15. G. L. Wells, J. E. Jackson, and E. N. Mitchell, “Superconducting tunnelling in single-crystal and polycrystal films of aluminum,” Phys. Rev. B 1 (9), 3636–3644 (1970).

    Article  Google Scholar 

  16. P. N. Chubov, V. V. Eremenko, and Yu. A. Pilipenko, “Dependence of the critical temperature and energy gap on the thickness of superconducting aluminum films,” Sov. Phys. JETP 28 (3), 389–395 (1969).

    Google Scholar 

  17. J. M. Lock, “Penetration of magnetic fields into superconductors III. Measurements on thin films of tin, lead and indium,” Proc. R. Soc. London A 208, 391–408 (1951).

  18. L. N. Cooper, “Superconductivity in the neighborhood of metallic contacts,” Phys. Rev. Lett. 6, 869–873 (1961).

  19. P. G. De Gennes, “Boundary effects in superconductors,” Rev. Mod. Phys. 36, 225 –238 (1964).

  20. I. M. Suslov, “Anderson transition in superconducting superlattices,” Sverkhprovodimost’: Fizika, Khimiya, Technologiya 4 (6), 1065–1072 (1991).

    Google Scholar 

  21. I. M. Suslov, “Surface effects in superconductors,” SFKhT 4 (11), 2093–2106 (1991).

    Google Scholar 

  22. Yu. A. Krotov and I. M. Suslov, “On a possible way to increase the Tc of oxide superconductors,” Zh. Eksp. Tekh. Fiz. 103 (4), 1394–1403 (1993).

    Google Scholar 

Download references

Funding

This study was supported by Program for Basic Research of National Research University Higher School of Economics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Yu. Arutyunov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arutyunov, K.Y., Sedov, E.A., Zavialov, V.V. et al. The Critical Temperature of Superconducting Aluminum Films. Phys. Metals Metallogr. 124, 53–57 (2023). https://doi.org/10.1134/S0031918X22602025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X22602025

Keywords:

Navigation