Skip to main content
Log in

Atomic Ordering in Fe2NiZ (Z = Al, Ga, In, Sn) Alloys: Effects on the Anisotropy and Properties of the Ground State

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The effect of atomic configurations on the magnetic and structural properties of Fe2NiZ (Z = Al, Ga, In, Sn) Heusler alloys has been studied within the density functional theory. The competition between five structural motifs of the cubic phase due to permutations of Fe and Ni atoms is discussed. A new structure of the cubic phase with layer-by-layer atomic ordering of Fe and Ni atoms in the ground state is predicted. In this structural modification, the considered compounds have high magnetocrystalline anisotropy values that several times exceed the values for the FeNi alloy with tetragonal symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. M. D. Kuz’min, K. P. Skokov, H. Jian, I. Radulov, and O. Gutfleisch, “Towards high-performance permanent magnets without rare earths,” J. Phys. Condens. Matter 26, 064205 (2014). https://doi.org/10.1088/0953-8984/26/6/064205

    Article  CAS  Google Scholar 

  2. R. W. McCallum, L. H. Lewis, R. Skomski, M. J. Kramer, I. E. Anderson, “Practical aspects of modern and future permanent magnets,” Annu. Rev. Mater. Res. 44, 451–477 (2014). https://doi.org/10.1146/annurev-matsci-070813-113457

    Article  CAS  Google Scholar 

  3. D. Niarchos, G. Giannopoulos, M. Gjoka, C. Sarafidis, V. Psycharis, J. Rusz, A. A. Edström, O. Eriksson, P. Toson, J. Fidler, E. Anagnostopoulou, U. Sanyal, F. Ott, L. M. Lacroix, G. Viau, C. Bran, M. Vazquez, L. Reichel, L. Schultz, S. Fahler, “Toward rare-earth-free permanent magnets: a combinatorial approach exploiting the possibilities of modeling, shape anisotropy in elongated nanoparticles, and combinatorial thin-film approach,” JOM 67, 1318–1328 (2015). https://doi.org/10.1007/s11837-015-1431-7

    Article  CAS  Google Scholar 

  4. S. Hirosawa, “Current status of research and development toward permanent magnets free from critical elements,” J. Magn. Soc. Jpn. 39 (3), 85–95 (2015). https://doi.org/10.3379/msjmag.1504R004

    Article  Google Scholar 

  5. R. Skomski and J. M. D. Coey, “Magnetic anisotropy—How much is enough for a permanent magnet?,” Scr. Mater. 112, 3–8 (2016). https://doi.org/10.1016/j.scriptamat.2015.09.021

    Article  CAS  Google Scholar 

  6. D. Li, D. Pan, S. Li, and Z. Zhang, “Recent developments of rare-earth-free hard-magnetic materials,” Sci. China Phys., Mech. Astron 59, 617501 (2016). https://doi.org/10.1007/s11433-015-5760-x

    Article  Google Scholar 

  7. K. P. Skokov and O. Gutfleisch, “Heavy rare earth free, free rare earth and rare earth free magnets-vision and reality,” Scr. Mater. 154, 289–294 (2018). https://doi.org/10.1016/j.scriptamat.2018.01.032

    Article  CAS  Google Scholar 

  8. A. Edström, J. Chico, A. Jakobsson, A. Bergman, J. Rusz, “Electronic structure and magnetic properties of L10 binary alloys,” Phys. Rev. B 90, 014402 (2014). https://doi.org/10.1103/PhysRevB.90.014402

  9. M. Werwiński and W. Marciniak, “Ab initio study of magnetocrystalline anisotropy, magnetostriction, and fermi surface of L10 FeNi (tetrataenite),” J. Phys. D: Appl. Phys. 50, 495008 (2017). https://doi.org/10.1088/1361-6463/aa958a

    Article  CAS  Google Scholar 

  10. L.-Y. Tian, H. Levämäki, O. Eriksson, K. Kokko, Á. Nagy, E. K. Délczeg-Czirják, and L. Vitos, “Density functional theory description of the order-disorder transformation in Fe–Ni,” Sci. Rep. 9, 8172 (2019). https://doi.org/10.1038/s41598-019-44506-7

    Article  CAS  Google Scholar 

  11. S. Bhattacharjee and S.-Ch. Lee, “First-principles study of the complex magnetism in Fe16N2,” Sci. Rep. 9, 8381 (2019). https://doi.org/10.1038/s41598-019-44799-8

    Article  CAS  Google Scholar 

  12. L. Reichel, L. Schultz, D. Pohl, S. Oswald, S. Fahler, M. Werwiński, A. Edström, E. K. Delczeg-Czirjak, and J. Rusz, “From soft to hard magnetic Fe–Co–B by spontaneous strain: A combined first principles and thin film study,” J. Condens. Matter Phys. 27, 476002 (2015). https://doi.org/10.1088/0953-8984/27/47/476002

    Article  CAS  Google Scholar 

  13. E. K. Delczeg-Czirjak, A. Edström, M. Werwiński, J. Rusz, N. V. Skorodumova, L. Vitos, and O. Eriksson, “Stabilization of the tetragonal distortion of FexCo1 – x alloys by C impurities: A potential new permanent magnet,” Phys. Rev. B 89, 144403 (2014). https://doi.org/10.1103/PhysRevB.89.144403

    Article  CAS  Google Scholar 

  14. M. Werwiński, A. Edström, J. Rusz, D. Hedlund, K. Gunnarsson, P. Svedlindh, J. Cedervall, and M. Sahlberg, “Magnetocrystalline anisotropy of Fe5PB2 and its alloys with Co and 5d elements: A combined first-principles and experimental study,” Phys. Rev. B 98, 214431 (2018). https://doi.org/10.1103/PhysRevB.98.214431

    Article  Google Scholar 

  15. M. Werwiński, S. Kontos, K. Gunnarsson, P. Svedlindh, J. Cedervall, V. Höglin, M. Sahlberg, A. Edström, O. Eriksson, and J. Rusz, “Magnetic properties of Fe5SiB2 and its alloys with P, S, and Co,” Phys. Rev. B 93, 174412 (2016). https://doi.org/10.1103/PhysRevB.93.174412

    Article  CAS  Google Scholar 

  16. A. Edström, M. Werwiński, D. Iuşan, J. Rusz, O. Eriksson, K. P. Skokov, I. A. Radulov, S. Ener, M. D. Kuz’min, J. Hong, M. Fries, D. Yu. Karpenkov, O. Gutfleisch, P. Toson, and J. Fidler, “Magnetic properties of (Fe1 ‒ xCox)2B alloys and the effect of doping by 5d elements,” Phys. Rev. B 92, 174413 (2015). https://doi.org/10.1103/PhysRevB.92.174413

    Article  CAS  Google Scholar 

  17. H. C. Herper, “Ni-based Heusler compounds: How to tune the magnetocrystalline anisotropy,” Phys. Rev. B 98, 014411 (2018). https://doi.org/10.1103/PhysRevB.98.014411

    Article  CAS  Google Scholar 

  18. Q. Gao, I. Opahle, O. Gutfleisch, and H. Zhang, “Designing rare-earth free permanent magnets in Heusler alloys via interstitial doping,” Acta Mater. 186, 355–362 (2020). https://doi.org/10.1016/j.actamat.2019.12.049

    Article  CAS  Google Scholar 

  19. Y.-I. Matsushita, G. Madjarova, J. K. Dewhurst, S. Shallcross, C. Felser, S. Sharma, and E. K. U. Gross, “Large magnetocrystalline anisotropy in tetragonally distorted Heuslers: A systematic study,” J. Phys. D: Appl. Phys 50, 095002 (2017). https://doi.org/10.1088/1361-6463/aa5441

    Article  CAS  Google Scholar 

  20. V. V. Sokolovskiy, O. N. Miroshkina, V. D. Buchelnikov, and M. E. Gruner, “Impact of local arrangement of Fe and Ni on the phase stability and magnetocrystalline anisotropy in Fe–Ni–Al Heusler alloys,” Phys. Rev. Mater. 6, 025402 (2022). https://doi.org/10.1103/PhysRevMaterials.6.025402

    Article  CAS  Google Scholar 

  21. G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  22. G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B 59, 1758 (1999). https://doi.org/10.1103/PhysRevB.59.1758

    Article  CAS  Google Scholar 

  23. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  24. P. Neibecker, M. E. Gruner, X. Xu, R. Kainuma, W. Petry, R. Pentcheva, and M. Leitner, “Ordering tendencies and electronic properties in quaternary Heusler derivatives,” Phys. Rev. B 96, 165131 (2017). https://doi.org/10.1103/PhysRevB.96.165131

    Article  Google Scholar 

  25. R. Wu and A. J. Freeman, “Spin-orbit induced magnetic phenomena in bulk metals and their surfaces and interfaces,” J. Magn. Magn. Mater. 200, 498–514 (1999). https://doi.org/10.1016/S0304-8853(99)00351-0

    Article  CAS  Google Scholar 

  26. P. Bruno, “Tight-binding approach to the orbital magnetic moment and magnetocrystalline anisotropy of transition-metal monolayers,” Phys. Rev. B 39, 865 (1989). https://doi.org/10.1103/PhysRevB.39.865

    Article  CAS  Google Scholar 

  27. J. Paulevé, A. Chamberod, K. Krebs, and A. Bourret, “Magnetization curves of Fe–Ni (50–50) single crystals ordered by neutron irradiation with an applied magnetic field,” J. Appl. Phys. 39, 989–990 (1968). https://doi.org/10.1063/1.1656361

    Article  Google Scholar 

  28. E. Poirier, F. E. Pinkerton, R. Kubic, R. K. Mishra, N. Bordeaux, A. Mubarok, L. H. Lewis, J. I. Gold-stein, R. Skomski, and K. Barmak, “Intrinsic magnetic properties of L10 FeNi obtained from meteorite NWA 6259,” J. Appl. Phys. 117, E318 (2015). https://doi.org/10.1063/1.4916190

    Article  CAS  Google Scholar 

  29. L. H. Lewis, F. E. Pinkerton, N. Bordeaux, A. Mubarok, E. Poirier, J. I. Goldstein, R. Skomski, and K. Barmak, “De magnete et meteorite: Cosmically motivated materials,” IEEE Magn. Lett. 5, 5500104 (2014). https://doi.org/10.1109/LMAG.2014.2312178

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation within State assignment no. 075-01493-23-03. The energies of formation were calculated under the financial support from Program Priority-2030 for National Universy of Science and Technology MISiS (grant no. K2-2022-022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Sokolovskiy.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolovskiy, V.V., Miroshkina, O.N., Buchelnikov, V.D. et al. Atomic Ordering in Fe2NiZ (Z = Al, Ga, In, Sn) Alloys: Effects on the Anisotropy and Properties of the Ground State. Phys. Metals Metallogr. 124, 138–145 (2023). https://doi.org/10.1134/S0031918X22601883

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X22601883

Keywords:

Navigation