Skip to main content
Log in

The Evolution of the Magnetic Properties of Iron Borate Single Crystals Doped with Gallium

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Highly perfect FeBO3 and Fe0.91Ga0.09BO3 single crystals were studied in a wide temperature range using SQUID magnetometry. A theoretical model describing the temperature and field dependences of the magnetization of single crystals has been developed. It is found that even a small concentration of gallium, which is a diamagnetic impurity, substantially affects the magnetic properties of single FeBO3 crystals. In particular, the Fe0.91Ga0.09BO3 crystal differs from the pure FeBO3 phase in by a lower magnetic phase transition temperature and a higher antiferromagnetic susceptibility at low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. E. S. Smirnova, N. I. Snegirev, I. S. Lyubutin, S. S. Starchikov, V. V. Artemov, M. V. Lyubutina, S. V. Yagupov, M. B. Strugatsky, Y. A. Mogilenec, K. A. Seleznyova, and O. A. Alekseeva, “Flux growth, structure refinement and Mössbauer studies of Fe1 ‒ xGaxBO3 single crystals,” Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 76, 1100–1108 (2020). https://doi.org/10.1107/S2052520620014171

    Article  CAS  Google Scholar 

  2. S. Yagupov, M. Strugatsky, K. Seleznyova, Yu. Mogilenec, N. Snegirev, N. V. Marchenkov, A. G. Kulikov, Ya. A. Eliovich, K. V. Frolov, Yu. L. Ogarkova, and I. S. Lyubutin, “Development of a synthesis technique and characterization of high-quality iron borate FeBO3 single crystals for applications in synchrotron technologies of a new generation,” Cryst. Growth Des. 18, 7435–7440 (2018). https://doi.org/10.1021/acs.cgd.8b01128

    Article  CAS  Google Scholar 

  3. A. K. Pankratov, M. B. Strugatskii, and S. V. Yagupov, “Gas-transport synthesis and morphology of isometric monocrystals of iron borate,” Uchenye Zap. Tavricheskogo Nats. Univ. Vernadskogo 20, 64–73 (2007).

    Google Scholar 

  4. J. C. Joubert, T. Shirk, W. B. White, and R. Roy, “Stability, infrared spectrum and magnetic properties of FeBO3,” Mater. Res. Bull. 3, 671–676 (1968). https://doi.org/10.1016/0025-5408(68)90116-5

    Article  CAS  Google Scholar 

  5. M. Pernet, D. Elmale, and J. C. Joubert, “Structure magnetique du metaborate de fer FeBO3,” Solid State Commun. 8, 1583–1587 (1970). https://doi.org/10.1016/0038-1098(70)90469-2

    Article  CAS  Google Scholar 

  6. Y. Mogilenec, K. Seleznyova, S. Yagupov, K. Seleznev, I. Nauhatsky, E. Maksimova, and M. Strugatsky, “Synthesis and structural characterization of Fe1 – xMexBO3 (Me = Al, Sc) single crystals,” J. Phys.: Conf. Ser. 2103, 012069 (2021). https://doi.org/10.1088/1742-6596/2103/1/012069

    Article  Google Scholar 

  7. Y. Mogilenec, K. Seleznyova, S. Yagupov, M. Strugatsky, and J. Kliava, “Dzyaloshinskii–Moriya interaction constant in iron-gallium borate single crystals,” J. Phys.: Conf. Ser. 1697, 012083 (2020). https://doi.org/10.1088/1742-6596/1697/1/012083

    Article  CAS  Google Scholar 

  8. K. Seleznyova, M. Strugatsky, S. Yagupov, Y. Mogilenec, A. Drovosekov, N. Kreine, P. Rosa, and J. Kliava, “Electron magnetic resonance of iron-gallium borate single crystals,” J. Appl. Phys. 125, 223905 (2019). https://doi.org/10.1063/1.5095753

    Article  CAS  Google Scholar 

  9. S. Yagupov, M. Strugatsky, K. Seleznyova, Y. Mogilenec, E. Milyukova, E. Maksimova, I. Nauhatsky, A. Drovosekov, N. Kreines, and J. Kliava, “Iron borate films: Synthesis and characterization,” J. Magn. Magn. Mater. 417, 338–343 (2016). https://doi.org/10.1016/j.jmmm.2016.05.098

    Article  CAS  Google Scholar 

  10. E. M. Maksimova, I. A. Nauhatsky, and V. E. Zubov, “Surface magnetism of real iron borate monocrystal,” J. Magn. Magn. Mater. 322, 477–480 (2010). https://doi.org/10.1016/j.jmmm.2009.10.001

    Article  CAS  Google Scholar 

  11. N. I. Snegirev, I. S. Lyubutin, S. V. Yagupov, M. A. Chuev, N. K. Chumakov, O. M. Zhigalina, D. N. Khmelenin, and M. B. Strugatsky, “Size effects in iron borate FeBO3 nanoparticles,” Russ. J. Inorg. Chem. 66, 1217–1222 (2021). https://doi.org/10.1134/S0036023621080283

    Article  CAS  Google Scholar 

  12. I. S. Lyubutin, N. I. Snegirev, M. A. Chuev, S. Starchikov, E. Smirnova, M. Lyubutina, S. Yagupov, M. Strugatsky, O. Alekseeva, “Magnetic and electric hyperfine parameters of antiferromagnet FeBO3 intended for monochromatization of synchrotron radiation,” J. Alloys Compd. 906, 164348 (2022). https://doi.org/10.1016/j.jallcom.2022.164348

    Article  CAS  Google Scholar 

  13. N. Snegirev, I. Lyubutin, A. Kulikov, D. Zolotov, A. Vasiliev, M. Lyubutina, S. Yagupov, Y. Mogilenec, K. Seleznyova, and M. Strugatsky, “Structural perfection of Fe1 – xGaxBO3 single crystals designed for nuclear resonant synchrotron experiments,” J. Alloys Compd. 889, 161702 (2022). https://doi.org/10.1016/j.jallcom.2021.161702

    Article  CAS  Google Scholar 

  14. V. D. Doroshev, N. M. Kovtun, S. N. Lukin, and A. N. Molchanov, “Basis magnetic anisotropy of weak ferromagnet FeVO3,” Pis’ma Zh. Eksp. Teor. Fiz. 29, 286–290 (1979).

    CAS  Google Scholar 

  15. M. Strugatsky, K. Seleznyova, S. Yagupov, A. Drovosekov, and J. Kliava, “Nature of magnetocrystalline anisotropy in the basal plane of iron borate,” J. Magn. Magn. Mater. 442, 417–422 (2017). https://doi.org/10.1016/j.jmmm.2017.06.132

    Article  CAS  Google Scholar 

  16. S. V. Vonsovskii, Magnetism (Nauka, Moscow, 1032).

  17. E. C. Stoner and E. P. Wohlfarth, “A mechanism of magnetic hysteresis in heterogeneous alloys,” Phil. Trans. R. Soc. A 240, 599–642 (1948). https://doi.org/10.1098/rsta.1948.0007

    Article  Google Scholar 

  18. M. A. Chuev and J. Hesse, “Nanomagnetism: extension of the Stoner–Wohlfarth model within neel’s ideas and useful plots,” J. Phys.: Condens. Matter 19, 506201 (2007). https://doi.org/10.1088/0953-8984/19/50/506201

    Article  CAS  Google Scholar 

  19. L. Neel, “Influence des fluctuations thermiques sur l’aimantation de grains ferromagnétiques très fins,” C. R. Hebd. Seances Acad. Sci. 228, 664–666 (1949).

    Google Scholar 

  20. S. S. Yakimov, V. I. Ozhogin, V. Ya. Gamlitskii, V. M. Cherepanov, and S. D. Pudkov, “Magnetic field induced antiferromagnetism in FeBO3,” Phys. Lett. A 39, 421–423 (1972). https://doi.org/10.1016/0375-9601(72)90123-5

    Article  CAS  Google Scholar 

  21. L. V. Velikov, E. G. Rudashevskii, and V. N. Seleznev, “Observation of antiferromagnetic resonance in iron borate above Neel temperature,” Izv. Akad. Nauk SSSR, Ser. Fiz. 36, 1531–1534 (1972).

    CAS  Google Scholar 

  22. H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford Univ. Press, Oxford, 1971).

    Google Scholar 

Download references

Funding

This work was funded by the Russian Foundation for Basic Research, project number 19-29-12016\21-mk in terms of the preparation of the single crystals and theoretical analysis.

X-ray fluorescent studies were supported by the Ministry of Science and Higher Education within the State assignment of FSRC “Crystallography and Photonics” of the RAS using the equipment of the Shared Research Center.

Mathematical calculations were performed in terms of State assignment of the Valiev Institute of Physics and Technology, Russian Academy of Sciences, theme no. FFNN-2022-0019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Snegirev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Kolchugina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snegirev, N.I., Bogach, A.V., Lyubutin, I.S. et al. The Evolution of the Magnetic Properties of Iron Borate Single Crystals Doped with Gallium. Phys. Metals Metallogr. 124, 133–137 (2023). https://doi.org/10.1134/S0031918X22601809

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X22601809

Keywords:

Navigation