Skip to main content
Log in

Rate-Dependent Compressive Behaviour of SiC−B4C−Al Hybrid Composites

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Effect of hybridization on the rate-dependent behaviour of Aluminum metal matrix composites (MMCs) comprising (0, 10, 20, and 30%) monolithic and hybrid SiC–B4C were prepared by powder metallurgy technique and tested under quasi-static and dynamic compression. Split Hopkinson pressure bar results revealed diverse strain rates attained by MMCs. 30% SiC reinforcement of Al matrix resulted in 16.9% higher stress and 13.5% higher toughness compared to 30% B4C reinforced MMC. Hybridizing 20% SiC–10% B4C with Al-matrix resulted in 18.9% higher stress and 29.7% higher toughness compared to 30% B4C reinforced MMC. Damage studies revealed how inverting hybrid particle reinforcement leads to improved mechanical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. S. Ghanaraja, K. L. V. Kumar, H. P. Raju, and K. S. Ravikumar, “Processing and mechanical properties of hot extruded Al(Mg)–Al2O3 composites,” Mater. Today: Proc. 2, 1291–1300 (2015). https://doi.org/10.1016/j.matpr.2015.07.045

    Article  CAS  Google Scholar 

  2. D. Patidar and R. S. Rana, “Effect of B4C particle reinforcement on the various properties of aluminium matrix composites: A survey paper,” Mater. Today: Proc. 4, 2981–2988 (2017). https://doi.org/10.1016/j.matpr.2017.02.180

    Article  Google Scholar 

  3. B. V. Ramnath, C. Elanchezhian, R. Annamalai, S. Aravind, T. S. A. Atreya, V. Vignesh, and C. Subramanian, “Aluminium metal matrix composites-A review,” Rev. Adv. Mater. Sci. 38, 55–60 (2014).

    CAS  Google Scholar 

  4. A. Sharma, V. M. Sharma, S. Mewar, S. K. Pal, and J. Paul, “Friction stir processing of Al6061–SiC-graphite hybrid surface composites,” Mater. Manuf. Processes 33, 795–804 (2018). https://doi.org/10.1080/10426914.2017.1401726

    Article  CAS  Google Scholar 

  5. Ş. Karabulut, U. Gökmen, and H. Çinici, “Study on the mechanical and drilling properties of AA7039 composites reinforced with Al2O3/B4C/SiC particles,” Compos. Part B: Eng. 93, 43–55 (2016). https://doi.org/10.1016/j.compositesb.2016.02.054

    Article  CAS  Google Scholar 

  6. P. Singh, N. R. Chauhan, and S. Rajesha, “Effect of the addition of ductile phase on mechanical properties of alumina/nano SiC ceramic composite,” Adv. Mater. Process. Technol. (2022). https://doi.org/10.1080/2374068x.2022.2120291

  7. M. R. Allazadeh, M. K. Itani, and S. N. Wosu, “Compression of the material characteristics of steel, aluminum, wood and woven graphite epoxy composites in response to high strain rate load,” Adv. Mater. Sci. Appl. 1, 13–30 (2012). https://doi.org/10.5963/amsa0101003

    Article  Google Scholar 

  8. S. Prasad, H. Chouhan, K. Kartikeya, K. K. Singh, and N. Bhatnagar, “An experimental investigation into mechanical behaviour of Basalt PEI laminates at various strain rates,” Compos. Struct. 267, 113800 (2021). https://doi.org/10.1016/j.compstruct.2021.113800

    Article  CAS  Google Scholar 

  9. T. V. Knyazyuk, A. A. Zisman, N. S. Novoskol’tsev, and E. I. Khlusova, “Anomalous refinement of the austenite grain upon high-strain-rate hot deformation of microalloyed medium-carbon steel,” Phys. Met. Metallogr. 121, 543–547 (2020). https://doi.org/10.1134/s0031918x20060095

    Article  ADS  CAS  Google Scholar 

  10. Yo. Suo, Z. Deng, B. Wang, Ya. Gong, and P. Jia, “Constitutive model of metal matrix composites at high strain rates and its application,” Mater. Today Commun. 27, 102328 (2021). https://doi.org/10.1016/j.mtcomm.2021.102328

    Article  CAS  Google Scholar 

  11. C. San Marchi, F. Cao, M. Kouzeli, and A. Mortensen, “Quasistatic and dynamic compression of aluminum-oxide particle reinforced pure aluminum,” Mater. Sci. Eng., A 337, 202–211 (2002). https://doi.org/10.1016/S0921-5093(02)00035-7

    Article  Google Scholar 

  12. H. Zhang, K. T. Ramesh, and E. S. C. Chin, “High strain rate response of aluminum 6092/B4C composites,” Mater. Sci. Eng., A 384, 26–34 (2004). https://doi.org/10.1016/j.msea.2004.05.027

    Article  CAS  Google Scholar 

  13. B. Liu, W. Huang, H. Wang, M. Wang, and X. Li, “Compressive behavior of high particle content B4C/Al composite at elevated temperature,” Trans. Nonferrous Met. Soc. China 23, 2826–2832 (2013). https://doi.org/10.1016/s1003-6326(13)62803-4

    Article  CAS  Google Scholar 

  14. J. Zhang, H. Shi, M. Cai, L. Liu, and P. Zhai, “The dynamic properties of SiCp/Al composites fabricated by spark plasma sintering with powders prepared by mechanical alloying process,” Mater. Sci. Eng., A 527, 218–224 (2009). https://doi.org/10.1016/j.msea.2009.08.067

    Article  CAS  Google Scholar 

  15. Z. H. Tan, B. J. Pang, D. T. Qin, J. Y. Shi, and B. Z. Gai, “The compressive properties of 2024Al matrix composites reinforced with high content SiC particles at various strain rates,” Mater. Sci. Eng., A 489, 302–309 (2008). https://doi.org/10.1016/j.msea.2007.12.021

    Article  CAS  Google Scholar 

  16. H. Lee, S. S. Sohn, C. Jeon, I. Jo, S.-K. Lee, and S. Lee, “Dynamic compressive deformation behavior of SiC-particulate-reinforced A356 Al alloy matrix composites fabricated by liquid pressing process,” Mater. Sci. Eng., A 680, 368–377 (2017). https://doi.org/10.1016/j.msea.2016.10.102

    Article  CAS  Google Scholar 

  17. A. N. Petrova, I. G. Brodova, S. V. Razorenov, E. V. Shorokhov, and T. K. Akopyan, “Mechanical properties of the Al–Zn–Mg–Fe–Ni alloy of eutectic type at different strain rates,” Phys. Met. Metallogr. 120, 1221–1227 (2019). https://doi.org/10.1134/s0031918x19120135

    Article  ADS  CAS  Google Scholar 

  18. A. K. Bodukuri, K. Eswaraiah, K. Rajendar, and V. Sampath, “Fabrication of Al–SiC–B4C metal matrix composite by powder metallurgy technique and evaluating mechanical properties,” Perspect. Sci. 8, 428–431 (2016). https://doi.org/10.1016/j.pisc.2016.04.096

    Article  Google Scholar 

  19. S. Krishnakumar and T. Senthilvelan, “Experimental analysis on the flow properties of Al–B4C, Al–TiO2 composites produced by P/M process,” Mater. Today: Proc. 5, 11585–11592 (2018). https://doi.org/10.1016/j.matpr.2018.02.127

    Article  CAS  Google Scholar 

  20. D. Bommana, T. R. K. Dora, N. P. Senapati, and A. S. Kumar, “Effect of 6 wt % particle (B4C + SiC) reinforcement on mechanical properties of AA6061 aluminum hybrid MMC,” Silicon 14, 4197–4206 (2022). https://doi.org/10.1007/s12633-021-01210-4

    Article  CAS  Google Scholar 

  21. B. A. Gama, S. L. Lopatnikov, and J. W. J. Gillespie, “Hopkinson bar experimental technique: A critical review,” Appl. Mech. Rev. 57, 223–250 (2014). https://doi.org/10.1115/1.1704626

    Article  ADS  Google Scholar 

  22. H. Chouhan, N. A. Bhalla, and N. Bhatnagar, “High strain rate performance of UHMWPE composites: Effect of moisture ingress and egress,” Mater. Today Commun. 26, 101709 (2021). https://doi.org/10.1016/j.mtcomm.2020.101709

    Article  CAS  Google Scholar 

  23. H. Chouhan, N. A. Bhalla, A. K. Bandaru, S. A. Gebremeskel, and N. Bhatnagar, “Quasi-static and high strain rate response of Kevlar reinforced thermoplastics,” Polym. Test. 93, 106964 (2021). https://doi.org/10.1016/j.polymertesting.2020.106964

    Article  CAS  Google Scholar 

  24. A. K. Bandaru, H. Chouhan, S. Prasad, P. M. Weaver, N. Bhatnagar, and R. O’Higgins, “Effect of weave pattern on high strain rate performance of glass polytetrafluoroethylene composites,” Polym. Compos. 43, 1809–1822 (2021). https://doi.org/10.1002/pc.26499

    Article  CAS  Google Scholar 

  25. N. K. Naik, P. J. Shankar, V. R. Kavala, G. Ravikumar, J. R. Pothnis, and H. Arya, “High strain rate mechanical behavior of epoxy under compressive loading: Experimental and modeling studies,” Mater. Sci. Eng., A 528, 846–854 (2011). https://doi.org/10.1016/j.msea.2010.10.099

    Article  CAS  Google Scholar 

  26. D. Lehmhus, J. Weise, J. Baumeister, L. Peroni, M. Scapin, C. Fichera, M. Avalle, and M. Busse, “Quasi-static and dynamic mechanical performance of glass microsphere- and cenosphere-based 316L syntactic foams,” Procedia Mater. Sci. 4, 383–387 (2014). https://doi.org/10.1016/j.mspro.2014.07.578

    Article  CAS  Google Scholar 

  27. D. J. Lloyd, “Particle reinforced aluminium and magnesium matrix composites,” Int. Mater. Rev. 39, 1–23 (1994). https://doi.org/10.1179/imr.1994.39.1.1

    Article  CAS  Google Scholar 

  28. A. G. Evans, J. W. Hutchinson, and R. M. Mcmeeking, “Stress-strain behavior of metal matrix composites with discontinuous reinforcements,” Scr. Metall. Mater. 25, 3–8 (1991). https://doi.org/10.1016/0956-716x(91)90344-z

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors are grateful to Prof. Naresh Bhatnagar, Production Engineering Lab., Mechanical Engineering Department, IIT Delhi for granting permission to conduct the experiments.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tulsi Chouhan or Manoj Soni.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tulsi Chouhan, Manoj Soni Rate-Dependent Compressive Behaviour of SiC−B4C−Al Hybrid Composites. Phys. Metals Metallogr. 124, 1567–1578 (2023). https://doi.org/10.1134/S0031918X22601688

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X22601688

Keywords:

Navigation