Skip to main content
Log in

Hierarchical Heterogeneity in Bulk Metallic Glasses Rejuvenated by Cryogenic Thermal Cycling

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The structural homogeneity of bulk metallic glasses rejuvenated by cryogenic-thermal cycling is discussed and bifurcated into two hierarchies: one can be termed as inhomogeneity with a size similar to shear transformation zones, while another is homogeneity in the magnitude of around the affected zone of nanoindentations. The hierarchical structural characteristics reflect the reduction in size, the increase in number, and the uniformity in spatial distribution, of the soft regions. The reduction in size explains the non-sacrificing or even enhanced strength, and the increased number and homogenous distribution facilitate the enhancement of plasticity for bulk metallic glasses rejuvenated using cryogenic-thermal cycling. This observed difference in homogeneity originates from the non-affine thermal strain in the intrinsically inhomogeneous bulk metallic glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. R. Yavari, J. J. Lewandowski, and J. Eckert, “Mechanical properties of bulk metallic glasses,” MRS Bull. 32, 635–638 (2007). https://doi.org/10.1557/mrs2007.125

    Article  CAS  Google Scholar 

  2. Q. Wang, Y. Yang, H. Jiang, C. T. Liu, H. H. Ruan, and J. Lu, “Superior tensile ductility in bulk metallic glass with gradient amorphous structure,” Sci. Rep. 4, 4757 (2014). https://doi.org/10.1038/srep04757

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. P. F. Guan, B. Wang, Y. C. Wu, S. Zhang, B. S. Shang, Y. C. Hu, R. Su, and Q. Liu, “Heterogeneity: The soul of metallic glasses,” Acta. Phys. Sin. 66, 176112 (2017).

    Article  Google Scholar 

  4. J. J. Yi, L. T. Kong, M. Ferry, C. G. Tang, G. Sha, and J. F. Li, “Origin of the separated α-Al nanocrystallization with Si added to Al86Ni9La5 amorphous alloy,” Mater. Charact. 178, 111199 (2021). https://doi.org/10.1016/j.matchar.2021.111199

    Article  CAS  Google Scholar 

  5. A. Slipenyuk and J. Eckert, “Correlation between enthalpy change and free volume reduction during structural relaxation of Zr55Cu30Al10Ni5 metallic glass,” Scr. Mater. 50, 39–44 (2004). https://doi.org/10.1016/j.scriptamat.2003.09.038

    Article  CAS  Google Scholar 

  6. J. Yi, W. Xu, X. Xiong, L. Kong, M. Ferry, and J. Li, “Glass-forming ability and crystallization behavior of Al86Ni9La5 metallic glass with Si addition,” Adv. Eng. Mater. 18, 972–977 (2016). https://doi.org/10.1002/adem.201500354

    Article  CAS  Google Scholar 

  7. Z. Z. Yang, L. Zhu, L. X. Ye, X. Gao, S. S. Jiang, H. Yang, and Y. G. Wang, “Nanoscale structural heterogeneity perspective on the improved magnetic properties during relaxation in a Fe-based metallic glass,” J. Non-Cryst. Solids 571, 121078 (2021). https://doi.org/10.1016/j.jnoncrysol.2021.121078

    Article  CAS  Google Scholar 

  8. D. Pan, Y. Yokoyama, T. Fujita, Y. H. Liu, S. Kohara, A. Inoue, and M. Chen, “Correlation between structural relaxation and shear transformation zone volume of a bulk metallic glass,” Appl. Phys. Lett. 95, 141919 (2009). https://doi.org/10.1063/1.3246151

    Article  ADS  CAS  Google Scholar 

  9. J. S. Gu and H. F. Bo, “Influence of structural relaxation on compressive plasticity of Zr64.13Cu15.75Ni10.12Al10 bulk metallic glass,” Adv. Mater. Res. 910, 48–52 (2014). https://www.scientific.net/amr.910.48

  10. M. Song, Ya.-Q. Li, Zh.-G. Wu, and Yu.-H. He, “The effect of annealing on the mechanical properties of a ZrAlNiCu metallic glass,” J. Non-Cryst. Solids 357, 1239–1241 (2011). https://doi.org/10.1016/j.jnoncrysol.2010.09.024

    Article  ADS  CAS  Google Scholar 

  11. R. Wei, S. Yang, Y. Chang, Y. F. Li, C. J. Zhang, and L. He, “Mechanical property degradation of a CuZr-based bulk metallic glass composite induced by sub-Tg annealing,” Mater. Des. 56, 128–138 (2014). https://doi.org/10.1016/j.matdes.2013.11.001

    Article  CAS  Google Scholar 

  12. S. V. Ketov, Y. H. Sun, S. Nachum, Z. Lu, A. Checchi, A. R. Beraldin, H. Y. Bai, W. H. Wang, D. V. Louzguine-Luzgin, M. A. Carpenter, and A. L. Greer, “Rejuvenation of metallic glasses by non-affine thermal strain,” Nature 524, 200–203 (2015). https://doi.org/10.1038/nature14674

    Article  ADS  CAS  PubMed  Google Scholar 

  13. W. Guo, R. Yamada, and J. Saida, “Rejuvenation and plasticization of metallic glass by deep cryogenic cycling treatment,” Intermetallics 93, 141–147 (2018). https://doi.org/10.1016/j.intermet.2017.11.015

    Article  CAS  Google Scholar 

  14. C. Tang, J. Yi, W. Xu, and M. Ferry, “Temperature rise in shear bands in a simulated metallic glass,” Phys. Rev. B 98, 224203 (2018). https://doi.org/10.1103/physrevb.98.224203

    Article  ADS  CAS  Google Scholar 

  15. L. Zhang, T. Wang, Q. Hou, Q. Hao, and J. Qiao, “Deformation-induced microstructural heterogeneity and rejuvenation in a Zr-based bulk metallic glass,” J. Non-Cryst. Solids 574, 121148 (2021). https://doi.org/10.1016/j.jnoncrysol.2021.121148

    Article  CAS  Google Scholar 

  16. S. J. Kang, Q. P. Cao, J. Liu, Y. Tang, X. D. Wang, D. X. Zhang, I. S. Ahn, A. Caron, and J. Z. Jiang, “Intermediate structural state for maximizing the rejuvenation effect in metallic glass via thermo-cycling treatment,” J. Alloys Compd. 795, 493–500 (2019). https://doi.org/10.1016/j.jallcom.2019.05.026

    Article  CAS  Google Scholar 

  17. L. Y. Chen, A. D. Setyawan, H. Kato, A. Inoue, G. Q. Zhang, J. Saida, X. D. Wang, Q. P. Cao, and J. Z. Jiang, “Free-volume-induced enhancement of plasticity in a monolithic bulk metallic glass at room temperature,” Scr. Mater. 59, 75–78 (2008). https://doi.org/10.1016/j.scriptamat.2008.02.025

    Article  CAS  Google Scholar 

  18. X. L. Bian, D. Zhao, J. T. Kim, D. Şopu, G. Wang, R. Pippan, and J. Eckert, “Controlling the distribution of structural heterogeneities in severely deformed metallic glass,” Mater. Sci. Eng., A 752, 36–42 (2019). https://doi.org/10.1016/j.msea.2019.02.092

    Article  CAS  Google Scholar 

  19. M. Samavatian, R. Gholamipour, A. A. Amadeh, and S. Mirdamadi, “Correlation between plasticity and atomic structure evolution of a rejuvenated bulk metallic glass,” Metall. Mater. Trans. A 50, 4743–4749 (2019). https://doi.org/10.1007/s11661-019-05391-x

    Article  CAS  Google Scholar 

  20. C. M. Meylan, F. Papparotto, S. Nachum, J. Orava, M. Miglierini, V. Basykh, J. Ferenc, T. Kulik, and A. L. Greer, “Stimulation of shear-transformation zones in metallic glasses by cryogenic thermal cycling,” J. Non-Cryst. Solids 548, 120299 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120299

    Article  CAS  Google Scholar 

  21. J.-L. Gu, H.-W. Luan, Sh.-F. Zhao, H.-T. Bu, J.-J. Si, Ya. Shao, and K.-F. Yao, “Unique energy-storage behavior related to structural heterogeneity in high-entropy metallic glass,” Mater. Sci. Eng., A 786, 139417 (2020). https://doi.org/10.1016/j.msea.2020.139417

    Article  CAS  Google Scholar 

  22. T. Hufnagel, “Cryogenic rejuvenation,” Nat. Mater. 14, 867–868 (2015). https://doi.org/10.1038/nmat4394

    Article  ADS  CAS  PubMed  Google Scholar 

  23. X. L. Bian, G. Wang, H. C. Chen, L. Yan, J. G. Wang, Q. Wang, P. F. Hu, J. L. Ren, K. C. Chan, N. Zheng, A. Teresiak, Y. L. Gao, Q. J. Zhai, J. Eckert, J. Beadsworth, K. A. Dahmen, and P. K. Liaw, “Manipulation of free volumes in a metallic glass through Xe-ion irradiation,” Acta Mater. 106, 66–77 (2016). https://doi.org/10.1016/j.actamat.2016.01.002

    Article  ADS  CAS  Google Scholar 

  24. Q. Jia, Q. Zhou, Yu. Ren, Yi. Du, X. Zhao, X.‑Z. Wang, H. Wang, B. D. Beake, and F. Zhou, “Tribological characteristics of Ti-based bulk metallic glass via deep cryogenic-cycling treatment,” Mater. Charact. 179, 111356 (2021). https://doi.org/10.1016/j.matchar.2021.111356

    Article  CAS  Google Scholar 

  25. J. W. Lv, F. L. Wang, D. W. Yin, S. Zhang, Z. Q. Cai, Z. L. Shi, M. Z. Ma, and X. Y. Zhang, “Effect of deep cryogenic cycling treatment on the microstructure and mechanical properties of Ti-based bulk metallic glass,” J. Alloys Compd. 887, 161386 (2021). https://doi.org/10.1016/j.jallcom.2021.161386

    Article  CAS  Google Scholar 

  26. S. Di, Q. Wang, J. Zhou, Yi. Shen, J. Li, M. Zhu, K. Yin, Q. Zeng, L. Sun, and B. Shen, “Enhancement of plasticity for FeCoBSiNb bulk metallic glass with superhigh strength through cryogenic thermal cycling,” Scr. Mater. 187, 13–18 (2020). https://doi.org/10.1016/j.scriptamat.2020.05.059

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (no. 51801124), the Changzhou Science and Technology Bureau (no. CQ20210086, CJ20210065), and Postgraduate Research and Practice Innovation Program of Jiangsu Province (XSJCX22_13).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gongji Yang or Jiaojiao Yi.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yihao Wang, Yue, L., Yang, G. et al. Hierarchical Heterogeneity in Bulk Metallic Glasses Rejuvenated by Cryogenic Thermal Cycling. Phys. Metals Metallogr. 124, 1375–1379 (2023). https://doi.org/10.1134/S0031918X22601378

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X22601378

Keywords:

Navigation