Skip to main content
Log in

Characterization of a Duplex Coating (Boriding + Hydroxyapatite) on Austenitic Steel

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

In this study, duplex coating process (Boriding + Hydroxyapatite) was applied to 316L stainless steel alloys. Before coating, the substrate materials were shotblasted with 300–500 µm glass beads in a vacuum type shot blast machine. Tribological properties of the alloy with boriding process, its bioactivity and biocompatibility was increased with the hydroxyapatite (HA) coating process. Powder pack boriding technique was used in boriding process and Electrophoretic deposition method (EPD) was used in HA coating process. At the end of the study, the microstructures (SEM), elemental analyzes of the coating surfaces (EDS), Ca/P ratios, coating thicknesses were determined. In addition, the hardness and adhesion qualities of the boride layer were determined. When the results obtained are evaluated, duplex layers were successfully formed for all parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. R. A. García-León, J. Martínez-Trinidad, I. Campos-Silva, U. Figueroa-López, and A. Guevara-Morales, “Development of tribological maps on borided AISI 316L stainless steel under ball-on-flat wet sliding conditions,” Tribol. Int. 163, 107161 (2021). https://doi.org/10.1016/j.triboint.2021.107161

    Article  CAS  Google Scholar 

  2. E. Vafa, R. Bazargan-Lari, and M. E. Bahrololoom, “Electrophoretic deposition of polyvinyl alcohol/natural chitosan/bioactive glass composite coatings on 316L stainless steel for biomedical application,” Prog. Org. Coat. 151, 106059 (2021). https://doi.org/10.1016/j.porgcoat.2020.106059

    Article  CAS  Google Scholar 

  3. M. Assadian, H. Jafari, S. M. Ghaffari Shahri, M. H. Idris, and B. Gholampour, “Corrosion resistance of EPD nanohydroxyapatite coated 316L stainless steel,” Surf. Eng. 30, 806–813 (2014). https://doi.org/10.1179/1743294414y.0000000330

    Article  CAS  Google Scholar 

  4. C. A. Cuao-Moreu, M. Alvarez-Vera, E. O. García-Sánchez, D. Maldonado-Cortés, A. Juárez-Hernández, and M. A. L. Hernandez-Rodriguez, “Characterization of a duplex coating (boriding + sputter-deposited AlCrON) synthesized on an ASTM F-75 cobalt alloy,” Thin Solid Films 712, 138318 (2020). https://doi.org/10.1016/j.tsf.2020.138318

    Article  ADS  CAS  Google Scholar 

  5. G. A. Rodríguez-Castro, R. C. Vega-Morón, A. Meneses-Amador, H. W. Jiménez-Díaz, J. A. Andraca-Adame, I. E. Campos-Silva, and M. E. P. Pardavé, “Multi-pass scratch test behavior of AISI 316L borided steel,” Surf. Coat. Technol. 307, 491–499 (2016). https://doi.org/10.1016/j.surfcoat.2016.09.017

    Article  CAS  Google Scholar 

  6. S. Ipek Ayvaz and I. Aydin, “Effect of the microwave heating on diffusion kinetics and mechanical properties of borides in AISI 316L,” Trans. Indian Inst. Met. 73, 2635–2644 (2020). https://doi.org/10.1007/s12666-020-02072-x

    Article  CAS  Google Scholar 

  7. C. T. Sezgin and F. Hayat, “The effects of boriding process on tribological properties and corrosive behavior of a novel high manganese steel,” J. Mater. Process. Technol. 300, 117421 (2022). https://doi.org/10.1016/j.jmatprotec.2021.117421

    Article  CAS  Google Scholar 

  8. M. Keddam, R. Chegroune, M. Kulka, D. Panfil, S. Ulker, and S. Taktak, “Characterization and diffusion kinetics of the plasma paste borided AISI 440C steel,” Trans. Indian Inst. Met. 70, 1377–1385 (2016). https://doi.org/10.1007/s12666-016-0934-4

    Article  CAS  Google Scholar 

  9. G. Kara and G. Purcek, “Growth kinetics and mechanical characterization of boride layers formed on β‑type Ti-45Nb alloy,” Surf. Coat. Technol. 352, 201–212 (2018). https://doi.org/10.1016/j.surfcoat.2018.07.085

    Article  CAS  Google Scholar 

  10. L. Witek, N. Tovar, C. D. Lopez, J. Morcos, M. Bowers, Rs. Petrova, and P. G. Coelho, “Assessing osseointegration of metallic implants with boronized surface treatment,” Medicina Oral Patología Oral y Cirugia Bucal 25, e311–e317 (2020). https://doi.org/10.4317/medoral.23175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Q. Chen, C. Zhu, and G. A. Thouas, “Progress and challenges in biomaterials used for bone tissue engineering: Bioactive glasses and elastomeric composites,” Prog. Biomater. 1, 2 (2012). https://doi.org/10.1186/2194-0517-1-2

    Article  PubMed Central  PubMed  Google Scholar 

  12. Yu. Liu, G. S. Lin, J. Wang, C. Cheng, Yu. Yang, B. Lee, and K. Tung, “Synthesis and characterization of porous hydroxyapatite coatings deposited on titanium by flame spraying,” Surf. Coat. Technol. 349, 357–363 (2018). https://doi.org/10.1016/j.surfcoat.2018.06.010

    Article  CAS  Google Scholar 

  13. I. C. Nica, M. Popa, L. Marutescu, A. Dinischiotu, S. L. Iconaru, S. C. Ciobanu, and D. Predoi, “Biocompatibility and antibiofilm properties of samarium doped hydroxyapatite coatings: An in vitro study,” Coatings 11, 1185 (2021). https://doi.org/10.3390/coatings11101185

    Article  CAS  Google Scholar 

  14. H. Havitcioglu, B. Cecen, A. Pasinli, M. Yuksel, I. Aydin, and H. Yildiz, “In vivo investigation of calcium phosphate coatings on Ti6–Al–4V alloy substrates using lactic acid—Sodium lactate buffered synthetic body fluid,” Acta Orthop. Traumatologica Turcica 47, 417–422 (2013). https://doi.org/10.3944/aott.2013.2885

    Article  Google Scholar 

  15. A. A. White, S. M. Best, and I. A. Kinloch, “Hydroxyapatite–carbon nanotube composites for biomedical applications: A review,” Int. J. Appl. Ceram. Technol. 4, 1–13 (2007). https://doi.org/10.1111/j.1744-7402.2007.02113.x

    Article  CAS  Google Scholar 

  16. H. Singh, R. Kumar, C. Prakash, and S. Singh, “HA-based coating by plasma spray techniques on titanium alloy for orthopedic applications,” Mater. Today: Proc. 50, 612–628 (2022). https://doi.org/10.1016/j.matpr.2021.03.165

    Article  CAS  Google Scholar 

  17. F. Ghadami, M. Amani Hamedani, G. Rouhi, S. Saber-Samandari, M. Mehdi Dehghan, S. Farzad-Mohajeri, and F. Mashhadi-Abbas, “The correlation between osseointegration and bonding strength at the bone-implant interface: In-vivo & ex-vivo investigations on hydroxyapatite and hydroxyapatite/titanium coatings,” J. Biomechanics 144, 111310 (2022). https://doi.org/10.1016/j.jbiomech.2022.111310

    Article  Google Scholar 

  18. E. Kylmäoja, J. Holopainen, F. Abushahba, M. Ritala, and J. Tuukkanen, “Osteoblast attachment on titanium coated with hydroxyapatite by atomic layer deposition,” Biomolecules 12, 654 (2022). https://doi.org/10.3390/biom12050654

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. A. Pawlik, M. A. U. Rehman, Q. Nawaz, F. E. Bastan, G. D. Sulka, and A. R. Boccaccini, “Fabrication and characterization of electrophoretically deposited chitosan-hydroxyapatite composite coatings on anodic titanium dioxide layers,” Electrochim. Acta 307, 465–473 (2019). https://doi.org/10.1016/j.electacta.2019.03.195

    Article  CAS  Google Scholar 

  20. E. Avcu, F. E. Baştan, H. Z. Abdullah, M. A. U. Rehman, Ya. Yı. Avcu, and A. R. Boccaccini, “Electrophoretic deposition of chitosan-based composite coatings for biomedical applications: A review,” Prog. Mater. Sci. 103, 69–108 (2019). https://doi.org/10.1016/j.pmatsci.2019.01.001

    Article  CAS  Google Scholar 

  21. R. Drevet, N. Ben Jaber, J. Fauré, A. Tara, A. Ben Cheikh Larbi, and H. Benhayoune, “Electrophoretic deposition (EPD) of nano-hydroxyapatite coatings with improved mechanical properties on prosthetic Ti6Al4V substrates,” Surf. Coat. Technol. 301, 94–99 (2016). https://doi.org/10.1016/j.surfcoat.2015.12.058

    Article  CAS  Google Scholar 

  22. A. Molaei, M. Lashgaroo, and M. Yousefpour, “Effects of electrophoretic parameters on chitosan-based nanocomposite coatings,” J. Aust. Ceram. Soc. 56, 1–10 (2019). https://doi.org/10.1007/s41779-019-00413-8

    Article  CAS  Google Scholar 

  23. S. Singh, G. Singh, and N. Bala, “Corrosion behavior and characterization of HA/Fe3O4/CS composite coatings on AZ91 Mg alloy by electrophoretic deposition,” Mater. Chem. Phys. 237, 121884 (2019). https://doi.org/10.1016/j.matchemphys.2019.121884

    Article  CAS  Google Scholar 

  24. N. Horandghadim, J. Khalil-Allafi, and M. Urgen, “Influence of tantalum pentoxide secondary phase on surface features and mechanical properties of hydroxyapatite coating on NiTi alloy produced by electrophoretic deposition,” Surf. Coat. Technol. 386, 125458 (2020). https://doi.org/10.1016/j.surfcoat.2020.125458

    Article  CAS  Google Scholar 

  25. Yu. Kayali, A. Büyüksağiş, I. Güneş, and Yı. Yalçin, “Investigation of corrosion behaviors at different solutions of boronized AISI 316L stainless steel,” Prot. Met. Phys. Chem. Surf. 49, 348–358 (2013). https://doi.org/10.1134/s2070205113030192

    Article  CAS  Google Scholar 

  26. L. Thair, T. Ismaeel, B. Ahmed, and A. K. Swadi, “Development of apatite coatings on Ti–6Al–7Nb dental implants by biomimetic process and EPD: In vivo studies,” Surf. Eng. 27, 11–18 (2011). https://doi.org/10.1179/174329409x439023

    Article  CAS  Google Scholar 

  27. P. Goeuriot, R. Fillit, F. Thevenot, J. H. Driver, and H. Bruyas, “The influence of alloying element additions on the boriding of steels,” Mater. Sci. Eng. 55, 9–19 (1982). https://doi.org/10.1016/0025-5416(82)90078-7

    Article  CAS  Google Scholar 

  28. M. S. Gök, Yı. Küçük, A. Erdoğan, M. Öge, E. Kanca, and A. Günen, “Dry sliding wear behavior of borided hot-work tool steel at elevated temperatures,” Surf. Coat. Technol. 328, 54–62 (2017). https://doi.org/10.1016/j.surfcoat.2017.08.008

    Article  CAS  Google Scholar 

  29. I. Özbek, B. A. Konduk, C. Bindal, and A. H. Ucisik, “Characterization of borided AISI 316L stainless steel implant,” Vacuum 65, 521–525 (2002). https://doi.org/10.1016/s0042-207x(01)00466-3

    Article  ADS  Google Scholar 

  30. I. Campos-Silva, S. Bernabé-Molina, D. Bravo-Bárcenas, J. Martínez-Trinidad, G. Rodríguez-Castro, and A. Meneses-Amador, “Improving the adhesion resistance of the boride coatings to AISI 316L steel substrate by diffusion annealing,” J. Mater. Eng. Perform. 25, 3852–3862 (2016). https://doi.org/10.1007/s11665-016-2201-6

    Article  CAS  Google Scholar 

  31. I. Mejía-Caballero, M. Palomar-Pardavé, J. Martínez Trinidad, M. Romero-Romo, R. Pérez Pasten-Borja, L. Lartundo-Rojas, C. López-García, and I. Campos-Silva, “Corrosion behavior of AISI 316L borided and non-borided steels immersed in a simulated body fluid solution,” Surf. Coat. Technol. 280, 384–395 (2015). https://doi.org/10.1016/j.surfcoat.2015.08.053

    Article  CAS  Google Scholar 

  32. C. T. Kwok, P. K. Wong, F. T. Cheng, and H. C. Man, “Characterization and corrosion behavior of hydroxyapatite coatings on Ti6Al4V fabricated by electrophoretic deposition,” Appl. Surf. Sci. 255, 6736–6744 (2009). https://doi.org/10.1016/j.apsusc.2009.02.086

    Article  ADS  CAS  Google Scholar 

  33. M. Bartmanski, A. Zielinski, B. Majkowska-Marzec, and G. Strugala, “Effects of solution composition and electrophoretic deposition voltage on various properties of nanohydroxyapatite coatings on the Ti13Zr13Nb alloy,” Ceram. Int. 44, 19236–19246 (2018). https://doi.org/10.1016/j.ceramint.2018.07.148

    Article  CAS  Google Scholar 

  34. K. Dudek and T. Goryczka, “Electrophoretic deposition and characterization of thin hydroxyapatite coatings formed on the surface of NiTi shape memory alloy,” Ceram. Int. 42, 19124–19132 (2016). https://doi.org/10.1016/j.ceramint.2016.09.074

    Article  CAS  Google Scholar 

  35. H. Ziegele, C. Rebholz, H. Scheibe, B. Schultrich, and A. Matthews, “Mechanical and tribological properties of hard aluminium–carbon multilayer films prepared by the laser-arc technique,” Surf. Coat. Technol. 107, 159–167 (1998). https://doi.org/10.1016/s0257-8972(98)00587-8

    Article  CAS  Google Scholar 

  36. Yu. Kayali, “Investigation of the diffusion kinetics of borided stainless steels,” Phys. Met. Metallogr. 114, 1061–1068 (2013). https://doi.org/10.1134/s0031918x1322002x

    Article  ADS  Google Scholar 

  37. I. Gunes, S. Ulker, and S. Taktak, “Plasma paste boronizing of AISI 8620, 52100 and 440C steels,” Mater. Des. 32, 2380–2386 (2011). https://doi.org/10.1016/j.matdes.2010.11.031

    Article  CAS  Google Scholar 

  38. M. R. Urist, A. Lietze, and E. Dawson, “Beta-tricalcium phosphate delivery system for bone morphogenetic protein,” Clin. Orthop. Relat. Res. 187, 277–280 (1984). https://doi.org/10.1097/00003086-198407000-00042

  39. İ. Aydın, A. İ. Bahçepınar, M. Kırman, and M. A. Çipiloğlu, “HA coating on Ti6Al7Nb alloy using an electrophoretic deposition method and surface properties examination of the resulting coatings,” Coatings 9, 402 (2019). https://doi.org/10.3390/coatings9060402

    Article  CAS  Google Scholar 

  40. İ. Aydin, A. İhsan Bahçepinar, and C. Gül, “Caracterización de la superficie de un recubrimiento EPD sobre la aleación de Mg AZ91 obtenida mediante pulvimetalurgia,” Rev. Metalurgia 56, e176 (2020). https://doi.org/10.3989/revmetalm.176

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing university funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali İhsan Bahçepinar.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali İhsan Bahçepinar, Safiye İpek Ayvaz & İbrahim Aydin Characterization of a Duplex Coating (Boriding + Hydroxyapatite) on Austenitic Steel. Phys. Metals Metallogr. 124, 1837–1844 (2023). https://doi.org/10.1134/S0031918X22100271

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X22100271

Keywords:

Navigation