Skip to main content
Log in

The Effect of Calcium and Zinc on the Structure and Phase Composition of Casting Aluminum–Magnesium Alloys

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

In this paper, we study a group of alloys based on the Al–Mg–Ca–(Zn) system with various magnesium and calcium contents using computational (in Thermo-Calc software environment) and experimental (optical and scanning microscopy and X-ray microanalysis) methods. The calculated liquidus surfaces show that all alloys fall into the hypoeutectic region. According to the data of nonequilibrium crystallization, as the calcium concentration increases the liquidus temperature of the alloys decreases, while the temperature of the nonequilibrium solidus does not change. There is good agreement between the calculated and practical results. For example, there are no primary phases of crystallization origin in the structure, and the basis is an aluminum solid solution (Al) surrounded by veinlets of nonequilibrium eutectic containing magnesium, calcium, and zinc in its composition. At a joint increase in the concentration of magnesium and calcium, eutectic colonies coarsen and thicken. It was found that quenching allowed almost complete dissolution of the Al3Mg2 phase and the equilibrium double eutectic (Al) + Al4Ca acquired a more fragmented form. Upon joint doping with calcium and zinc, the eutectic structure becomes more fragmented, especially in the Al6Mg2Ca2Zn alloy. Subsequent heat treatment for solid solution leads to even greater fragmentation of the eutectic inclusions, as well as the dissolution of the Al3Mg2 phase. Due to the high solubility of zinc in the Al4Ca phase, inclusions of the Al2Mg3Zn3 phase, which is present in the calculated isotremic cross sections, are not detected. In the Al–Mg–Ca–Zn system, under conditions close to equilibrium, at magnesium and calcium contents of at least 6 and 2%, respectively, a stable Al2(Mg,Ca) phase can exist in alloys along with stable Al4Ca with zinc dissolved in the latter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. V. Glazoff, A. V. Khvan, V. S. Zolotorevsky, N. A. Belov, and A. T. Dinsdale, Casting Aluminum Alloys. Their Physical and Mechanical Metallurgy (Elsevier, Amsterdam, 2019).

    Google Scholar 

  2. J. G. Kaufman and E. L. Rooy, Aluminum Alloy Castings: Properties, Processes, and Applications (ASM Int., 2004).

    Book  Google Scholar 

  3. R. N. Lumley, Fundamentals of Aluminium Metallurgy: Production, Processing and Applications (Woodhead Publ. in Met. Surf. Eng., 2011).

  4. T. Dursun and C. Soutis, ”Recent developments in advanced aircraft aluminium alloys,” Mater. Des. 56, 862–871 (2014).

    Article  CAS  Google Scholar 

  5. W. Cassada, J. Liu, and J. Staley, “Aluminium alloys for aircraft structures,” Adv. Mater. Process. 12, 27–29 (2002).

    Google Scholar 

  6. R. Boyer, “Aircraft materials,” Encycl. Mater.: Sci. Technol. 27, 66–73 (2001).

    Google Scholar 

  7. F. C. Campbell, Manufacturing Technology for Aerospace Structural Materials (Elsevier, Amsterdam, 2006).

    Google Scholar 

  8. A. Graf, Materials, Design and Manufacturing for Lightweight Vehicles (Woodhead Publ. in Mater., 2020).

    Google Scholar 

  9. I. Polmear, Light Alloys: From Traditional Alloys to Nanocrystals (Elsevier, Amsterdam, 2006).

    Google Scholar 

  10. G. G. Krushenko, “Improving the technology of preparing an Al–Mg system alloy used in aircraft structures,” Vestnik SibGAU, No. 3, 202–209 (2014).

    Google Scholar 

  11. E. A. Starke and J. T. Staley, “Application of modern aluminum alloys to aircraft,” Prog. Aerosp. Sci. 32, 131–172 (1996).

    Article  Google Scholar 

  12. A. S. Warren, “Developments and challenges for aluminum – A Boeing perspective,” Mater. Forum 28, 24–31 (2004).

  13. A. P. Mouritz, Introduction to Aerospace Materials: 8 – Aluminium Alloys for Aircraft Structures (Woodhead Publ., 2012).

    Book  Google Scholar 

  14. T. Warner, “Recently-developed aluminium solutions for aerospace applications,” Mater. Sci. Forum 519–521, 1271–1278 (2006).

    Article  Google Scholar 

  15. V. S. Zolotorevskii and N. A. Belov, Metal Science of Cast Aluminum Alloys (MISiS, Moscow, 2005) [in Russian].

  16. N. A. Belov, Phase Composition of Industrial and Prospective Aluminum Alloys (MISiS, Moscow, 2010) [in Russian].

  17. S. G. Pantelakis and A. T. Kermanidis, 4 – Effect of Corrosion on the Mechanical Behaviour of Aircraft Aluminum Alloys (Woodhead Publ., 2009), pp. 67–108.

    Google Scholar 

  18. H. Zuqi, W. Li, L. Shulin, Z. Peng, and W. Shusen, “Research on the microstructure, fatigue and corrosion behavior of permanent mold and die cast aluminum alloy,” Mater. Des. 55, 353–360 (2014).

    Article  Google Scholar 

  19. A. Vinoth Jebaraj, K. V. V. Aditya, T. S. Sampath Kumar, L. Ajaykumar, and C. R. Deepak, “Mechanical and corrosion behaviour of aluminum alloy 5083 and its weldment for marine applications,” Mater. Today: Proc. 22, 1470–1478 (2020).

    Google Scholar 

  20. ASTM B928 Standard Specification for High Magnesium Aluminum-Alloy Sheet and Plate for Marine Service and Similar Environments (ASTM Int., 2007).

  21. M. S. Syrigou and R. S. Dow, “Strength of steel and aluminium alloy ship plating under combined shear and compression/tension,” Eng. Struct. 166, 128–141 (2018).

    Article  Google Scholar 

  22. D. W. Chalmers, Design of Ships’ Structures (HMSO, London, 1993).

    Google Scholar 

  23. Jr. R. E. Sanders, P. A. Hollinshead, and E. A. Simielli, “Industrial development of non-heat treatable aluminum alloys,” Mater. Forum 28, 53–64 (2004).

  24. Yu. N. Mansurov, J. U. Rakhmonov, N. V. Letyagin, and A. S. Finogeyev, “Influence of impurity elements on the casting properties of Al–Mg based alloys,” Non-ferrous Met. 44, 24–29 (2018).

    Article  Google Scholar 

  25. N. A. Belov, E. A. Naumova, T. K. Akopyan, and V. V. Doroshenko, “Phase diagram of the Al–Ca–Fe–Si system and its application for the design of aluminum matrix composites,” JOM 70, 2710–2715 (2018).

    Article  CAS  Google Scholar 

  26. N. A. Belov, E. A. Naumova, T. K. Akopyan, and V. V. Doroshenko, “Design of multicomponent aluminium alloy containing 2 wt % Ca and 0.1 wt % Sc for cast products,” J. Alloy Compd. 762, 528–536 (2018).

    Article  CAS  Google Scholar 

  27. T. K. Akopyan, N. A. Belov, A. A. Lukyanchuk, N. V. Letyagin, A. N. Petrov, A. S. Fortuna, and A. F. Musin, “Effect of high pressure torsion on the precipitation hardening in Al–Ca–La based eutectic alloy,” Mater. Sci. Eng., A 802, 140633 (2021).

    Article  CAS  Google Scholar 

  28. N. A. Belov, E. A. Naumova, T. K. Akopyan, and V. V. Doroshenko, “Phase diagram of Al–Ca–Mg–Si system and its application for the design of aluminum alloys with high magnesium content,” Metals 7, 429 (2017).

    Article  Google Scholar 

  29. N. A. Belov, E. A. Naumova, V. V. Doroshenko, and N. N. Avxentieva, “Combined effect of calcium and silicon on the phase composition and structure of Al–10% Mg alloy,” Russ. J. Non-Ferrous Met. 59, 67–75 (2018).

    Article  Google Scholar 

  30. S. S. S. Kumari, R. M. Pillai, and B. C. Pai, “Role of calcium in aluminium based alloys and composites,” Int. Mater. Rev. 50, 216–238 (2005).

    Article  CAS  Google Scholar 

  31. N. A. Belov, E. A. Naumova, and T. K. Akopyan, Aluminum Based Eutectic Alloys: New Alloying Systems (Ruda i Metally, 2016) [in Russian].

    Google Scholar 

  32. N. Belov, E. Naumova, and T. Akopyan, “Eutectic alloys based on the Al–Zn–Mg–Ca system: microstructure, phase composition and hardening,” Mater. Sci. Technol. 33, 656–666 (2017).

    Article  CAS  Google Scholar 

  33. P. K. Shurkin, A. P. Dolbachev, E. A. Naumova, and V. V. Doroshenko, “The effect of iron on the structure, hardening and physical properties of the alloys of the Al‒Zn–Mg–Ca system,” Tsv. Met., No. 5, 69–77 (2018).

  34. S. Amerioun, S. I. Simak, and U. Häussermann, “Laves-phase structural changes in the system CaAl2 – xMgx,” Inorg. Chem. 42, 1467–1474 (2003).

    Article  CAS  Google Scholar 

  35. S. Amerioun, T. Yokosawa, S. Lidin, and U. Häussermann, “Phase stability in the systems AeAl2 – xMgx (Ae = Ca, Sr, Ba):  Electron concentration and size controlled variations on the laves phase structural theme,” Inorg. Chem. 43, 4751–4760 (2004).

    Article  CAS  Google Scholar 

  36. M. Aljarrah, M. Medraj, X. Wang, E. Essadiqi, A. Muntasar, and G. Denes, “Experimental investigation of the Mg–Al–Ca system,” J. Alloys Compd. 436, 131–141 (2007).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, grant no. 21-79-00134.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Doroshenko.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doroshenko, V.V., Barykin, M.A., Korotkova, N.O. et al. The Effect of Calcium and Zinc on the Structure and Phase Composition of Casting Aluminum–Magnesium Alloys. Phys. Metals Metallogr. 123, 816–824 (2022). https://doi.org/10.1134/S0031918X22080038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X22080038

Keywords:

Navigation