Skip to main content

On the Stabilization of the Icosahedral Structure of Small Silver Nanoclusters under Thermal Action


One of the possible ways to improve the technical characteristics of QLEDs and OLEDs can be the use of the surface plasmon resonance that occurs in silver nanoparticles embedded in them. In the course of the experiments, it became clear that the frequency and intensity of the plasmon resonance strongly depend on the shape and size of the Ag nanoparticles that are used. Therefore, by adjusting these parameters of the plasmonic nanostructure and its internal structure it is possible to achieve significant progress in the formation of technical solutions for the creation of newest LEDs. For this, the thermal stability of the structure of small silver nanoclusters was studied by molecular dynamics in order to find the conditions for creating stable icosahedral structures. It was found that the use of Ag nanoclusters with a disordered initial structure in most cases led to the formation of the required five-particle symmetry in the operating temperature range of the LED, which is unattainable with currently available synthesis methods. The ideas proposed in the article can be used to create a more stable surface plasmon resonance effect in the next generation of OLEDs and QLEDs.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.


  1. F. D. Kiss, R. Miotto, and A. Ferraz, “Size effects on silver nanoparticles' properties,” Nanotechnology 22, 275708 (2011).

    Article  CAS  Google Scholar 

  2. W. Luo, W. Hu, and S. Xiao, “Size effect on the thermodynamic properties of silver nanoparticles,” J. Phys. Chem. C 112, 2359–2369 (2008).

    Article  CAS  Google Scholar 

  3. K. Nagpal, E. Rauwel, F. Ducroquet, and P. Rauwel, “Assessment of the optical and electrical properties of light-emitting diodes containing carbon-based nanostructures and plasmonic nanoparticles: a review,” Beilstein J. Nanotechnol. 12, 1078–1092 (2021).

    Article  CAS  Google Scholar 

  4. Q. Lin, B. Song, H. Wang, F. Zhang, F. Chen, L. Wang, L. S. Li, F. Guo, and H. Shen, “High-efficiency deep-red quantum-dot light-emitting diodes with type-II CdSe/CdTe core/shell quantum dots as emissive layers,” J. Mater. Chem. C 4, 7223–7229 (2016).

    Article  CAS  Google Scholar 

  5. E.-P. Jang, C.-Y. Han, S.-W. Lim, J.-H. Jo, D.-Y. Jo, S.-H. Lee, S.-Y. Yoon, and H. Yang, “Synthesis of alloyed ZnSeTe quantum dots as bright, color-pure blue emitters,” ACS Appl. Mater. Interfaces 11, 46062–46069 (2019).

    Article  CAS  Google Scholar 

  6. M. C. Neves, M. A. Martins, P. C. R. Soares-Santos, P. Rauwel, R. A. S. Ferreira, T. Monteiro, L. D. Carlos, and T. Trindade, “Photoluminescent, transparent and flexible di-ureasil hybrids containing CdSe/ZnS quantum dots,” Nanotechnology 19, 155601 (2008).

    Article  Google Scholar 

  7. T. HoonSeo, B. Kyoung Kim, G. Shin, C. Lee, M. Jong Kim, H. Kim, and E.-K. Suh, “Graphene-silver nanowire hybrid structure as a transparent and current spreading electrode in ultraviolet light emitting diodes,” Appl. Phys. Lett. 103, 051105 (2013).

    Article  Google Scholar 

  8. T. Tanaka, Y. Totoki, A. Fujiki, N. Zettsu, Y. Miyake, M. Akai-Kasaya, A. Saito, T. Ogawa, and Y. Kuwahara, “Enhanced red-light emission by local plasmon coupling of Au nanorods in an organic light-emitting diode,” Appl. Phys. Express 4, 032105 (2011).

    Article  Google Scholar 

  9. Y. Jin, Q. Li, G. Li, M. Chen, J. Liu, Y. Zou, K. Jiang, and S. Fan, “Enhanced optical output power of blue light-emitting diodes with quasi-aligned gold nanoparticles,” Nanoscale Res. Lett. 9, 7 (2014).

    Article  CAS  Google Scholar 

  10. J. B. Shin, S.-W. Baek, S. M. Lee, M. Kim, J.-Y. Lee, and K. C. Choi, “Efficient green organic light-emitting diodes by plasmonic silver nanoparticles,” IEEE Photonics Technol. Lett. 28, 371–374 (2016).

    Article  CAS  Google Scholar 

  11. J. Choi, S. Kim, C. H. Park, J. H. Kwack, C. H. Park, H. Hwang, H.-S. Im, Y. W. Park, and B.-K. Ju, “Light extraction enhancement in flexible organic light-emitting diodes by a light-scattering layer of dewetted Ag nanoparticles at low temperatures,” ACS Appl. Mater. Interfaces 10, 32373–32379 (2018).

    Article  CAS  Google Scholar 

  12. P. J. Jesuraj, K. Jeganathan, M. Navaneethan, and Y. Hayakawa, “Far-field and hole injection enhancement by noble metal nanoparticles in organic light emitting devices,” Synth. Met. 211, 155–160 (2016).

    Article  CAS  Google Scholar 

  13. J. Feng, D. Sun, S. Mei, W. Shi, F. Mei, Y. Zhou, J. Xu, Y. Jiang, and L. Wu, “Plasmonic-enhanced organic light-emitting diodes based on a graphene oxide/Au nanoparticles composite hole injection layer,” Front. Mater. 5, 75 (2018).

  14. M. Jung, D. Yoon Mo, M. Kim, C. Kim, T. Lee, J. Kim Hun, S. Lee, S. -H. Lim, and D. Woo, “Enhancement of hole injection and electroluminescence by ordered Ag nanodot array on indium tin oxide anode in organic light emitting diode,” Appl. Phys. Lett. 105, 013306 (2014).

    Article  Google Scholar 

  15. J. Jayabharathi, A. Prabhakaran, V. Thanikachalam, and M. J. Sundharesan, “Hybrid organic-inorganic light emitting diodes: effect of Ag-doped ZnO,” Photochem. Photobiol. A 325, 88–96 (2016).

    Article  CAS  Google Scholar 

  16. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004).

    Article  CAS  Google Scholar 

  17. M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.‑Y. Cho, C. C. Byeon, and S. -J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20, 1253–1257 (2008).

    Article  CAS  Google Scholar 

  18. S.-H. Chen, C.-L. Huang, C.-F. Yu, G.-F. Wu, Y.‑C. Kuan, B.-H. Cheng, and Y.-R. Li, “Efficacy improvement in polymer LEDs via silver-nanoparticle doping in the emissive layer,” Opt. Lett. 42, 3411–3414 (2017).

    Article  CAS  Google Scholar 

  19. J. B. You, X. W. Zhang, J. J. Dong, X. M. Song, Z. G. Yin, N. F. Chen, and H. Yan, “Localized-surface-plasmon enhanced the 357 nm forward emission from ZnMgO films capped by Pt nanoparticles,” Nanoscale Res. Lett. 4, 1121–1125 (2009).

    Article  CAS  Google Scholar 

  20. F. Cleri and V. Rosato, “Tight binding potentials for transition metal alloys,” Phys. Rev. B 48, 22–33 (1993).

    Article  CAS  Google Scholar 

  21. T. Pang, An Introduction to Computational Physics (University Press, Cambridge, 2006).

    Book  Google Scholar 

  22. H. Akbarzadeh and H. Yaghoubi, “Molecular dynamics simulations of silver nanocluster supported on carbon nanotube,” J. Colloid Interface Sci. 418, 178–184 (2014).

    Article  CAS  Google Scholar 

  23. D. Hua and Y. Hongtao, “A mini review on controlling the size of Ag nanoclusters by changing the stabilizer to Ag ratio and by changing DNA sequence,” Adv. Nat. Sci. 8, 1–8 (2015).

    Google Scholar 

  24. L. Deng, J. Yang, N. Zhan, T. Yu, H. Yu, and S. Chen, “High-performance solution-processed white organic light-emitting diodes based on silica-coated silver nanocubes,” Opt. Lett. 44, 983–986 (2019).

    Article  CAS  Google Scholar 

  25. B. Munkhbat, H. Pohl, P. Denk, T. A. Klar, M. C. Scharber, and C. Hrelescu, “Performance boost of organic light-emitting diodes with plasmonicnanostars,” Adv. Opt. Mater. 4, 772–781 (2016).

    Article  CAS  Google Scholar 

  26. T. Yu, L. Deng, P. Xia, Y. Lu, N. Zhan, and S. Chen, “Ultrahigh-performance blue organic light-emitting diodes based on SiO2 coated Ag nanocubes and its working mechanism,” Org. Electron. 75, 105388 (2019).

    Article  CAS  Google Scholar 

  27. L. V. Redel’, Yu. Ya. Gafner, and S. L. Gafner, “Role of “magic” numbers in structure formation in small silver nanoclusters,” Phys. Solid State 57, 2117–2125 (2015).

    Article  Google Scholar 

  28. Y. Gafner, S. Gafner, and D. Bashkova, “On measuring the structure stability for small silver clusters to use them in plasmonics,” J. Nanopart. Res. 21, 243 (2019).

    Article  Google Scholar 

  29. D. A. Ryzhkova, S. L. Gafner, and Yu. Ya. Gafner, “Effect of “magic” fcc numbers on the stability of the structure of small silver nanoclusters,” JETP Lett. 113, 638–645 (2021).

    Article  CAS  Google Scholar 

  30. I. L. Garzon, K. Michaelian, M. R. Beltran, A. Posada-Amarillas, P. Ordejon, E. Artacho, D. Sanchez-Portal, and J. M. Soler, “Lowest energy structures of gold nanoclusters,” Phys. Rev. Lett. 81, 1600–1603 (1998).

    Article  CAS  Google Scholar 

  31. F. Baletto and R. Ferrando, “Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects,” Rev. Mod. Phys. 77, 371–423 (2005).

    Article  CAS  Google Scholar 

  32. K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced spontaneous emission rate in an organic light-emitting device structure: Cathode structure for plasmonic application,” Appl. Phys. Lett. 94, 173301 (2009).

    Article  Google Scholar 

Download references


Yu.Ya. Gafner is grateful to the Scientific and Educational Center “Yenisei Siberia” for help in conducting the research.


This work was supported by the Russian Foundation for Basic Research (grant no. 19-48-190002).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Yu. Ya. Gafner.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ryzhkova, D.A., Gafner, S.L. & Gafner, Y.Y. On the Stabilization of the Icosahedral Structure of Small Silver Nanoclusters under Thermal Action. Phys. Metals Metallogr. 123, 567–575 (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • structural stability
  • nanoclusters
  • silver
  • computer simulation
  • structure
  • strong bond