Skip to main content

Magnetic Properties and Local Atomic Ordering in Ce(Fe1 – xSix)2 Compounds with a Silicon Content x ≤ 0.05


To specify what triggers the magnetostructural transition in CeFe2 doped with silicon, the temperature dependences of the magnetization, as well as the initial magnetic susceptibility and field dependences of the magnetization of the rare-earth intermetallic compounds Ce(Fe1 – xSix)2 with the silicon content x ≤ 0.05, were measured. The transition temperature to the magnetically ordered state and the average magnetic moment at Fe atoms were determined, and the magnetic contribution to the entropy change was estimated. Mössbauer spectra of Ce(Fe1 – xSix)2 (x ≤ 0.05) in the paramagnetic state were measured with a discretization of velocity scale of 512 channels, processing of which served to confirm the earlier suggested local ordering of Si atoms in the Fe sublattice.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.


  1. K. H. J. Buschow and J. S. van Wieringen, “Crystal structure and magnetic properties of cerium-iron compounds,” Phys. Status Solidi 42, No. 1, 231–239 (1970).

    Article  CAS  Google Scholar 

  2. K. H. J. Buschow and R. P. van Stapele, “Magnetic properties of the intermetallic compounds RFe2,” J. Phys. Colloq. 32, 672–674 (1971).

    Google Scholar 

  3. A. M. van Diepen and K. H. J. Buschow, “Hydrogen absorption in CeFe2 and ThFe3,” Solid State Commun. 22, No. 2, 113–115 (1977).

    Article  CAS  Google Scholar 

  4. L. Paolasini, B. Ouladdiaf, N. Bernhoeft, J. P. Sanchez, P. Vulliet, G. H. Lander, and P. Canfield, “Magnetic ground state of pure and doped CeFe2,” Phys. Rev. Lett. 90, No. 5, 057201-1-4 (2003).

    Article  Google Scholar 

  5. L. Paolasini, S. Di Matteo, P. P. Deen, S. Wilkins, C. Mazzoli, B. Detlefs, G. Lapertot, and P. Canfield, “Resonant magnetic X-ray scattering in the antiferromagnet Ce(Fe1 – xCox)2,” Phys. Rev. B 77, No. 9, 094433-1–11 (2008).

    Article  Google Scholar 

  6. A. Haldar, K. G. Suresh, A. K. Nigam, A. A. Coelho, and S. Gama, “Stabilization of antiferromagnetism in CeFe2 alloys: the effects of chemical and hydrostatic pressure,” J. Phys. Condens. Matter 21, No. 49, 496003-1-6 (2009).

    Article  Google Scholar 

  7. J. Wang, Y. Feng, R. Jaramillo, J. Van Wezel, P. C. Canfield, and T. F. Rosenbaum, “Pressure tuning of competing magnetic interactions in intermetallic CeFe2,” Phys. Rev. B 86, No. 1, 014422-1–7 (2012).

    Google Scholar 

  8. S. B. Roy and B. R. Coles, “The instability of ferromagnetism in CeFe2: Effects of Al substitution,” J. Phys. F Met. Phys. 17, 215–220 (1987).

    Article  Google Scholar 

  9. A. K. Grover, R. G. Pillay, V. Balasubramanian, and P. N. Tandon, “Frustration of Fe moments in CeFe2 matrix,” Solid State Commun. 67, No. 12, 1223–1227 (1988).

    Article  CAS  Google Scholar 

  10. S. J. Kennedy and B. R. Coles, “The magnetic phases of pseudobinary Ce(Fe1 – xMx)2 intermetallic compounds; M = Al, Co, Ru,” J. Phys. Condens. Matter 2, No. 5, 1213–1222 (1990).

    Article  CAS  Google Scholar 

  11. A. Haldar, K. G. Suresh, and A. K. Nigam, “Magnetism in gallium-doped CeFe2: Martensitic scenario,” Phys. Rev. B 78, No. 14, 144429-1–8 (2008).

    Article  Google Scholar 

  12. A. Haldar, N. K. Singh, Y. Mudryk, K. G. Suresh, A. K. Nigam, and V. K. Pecharsky, “Temperature and magnetic field induced structural transformation in Si-doped CeFe2: An in-field X-ray diffraction study,” Solid State Commun. 150, No. 17–18, 879–883 (2010).

    Article  CAS  Google Scholar 

  13. A. V. Deryagin, A. A. Kazakov, N. V. Kudrevatykh, V. N. Moskalev, N. V. Mushnikov, and S. V. Terent’ev, “Magnetic moment, magnetostriction and effective field on Fe nuclei in CeFe2, LuFe2 and their hydrides,” Fiz. Met. Metalloved. 60, No. 2, 295–300 (1985).

    CAS  Google Scholar 

  14. A. Haldar, A. Das, A.Hoser, T. Hofmann, A.K. Nayak, K.G. Suresh, and A.K. Nigam, “High field neutron diffraction study in Ce(Fe0.95Si0.05)2 compound,” J. Appl. Phys. 109, No. 7, 07E125-1–3 (2011).

    Article  Google Scholar 

  15. P. N. Tandon, R. G. Pillay, A. K. Grover, and V. Balasubramanian, “Impurity induced Fe spin reorientation in CeFe2,” Hyperfine Interact. 50, No. 1–4, 733–740 (1989).

    Article  Google Scholar 

  16. A. V. Vershinin, V. V. Serikov, N. M. Kleinerman, N. V. Mushnikov, E. G. Gerasimov, V. S. Gaviko, and A. V. Proshkin, “Magnetic phase transitions in the Ce(Fe1 – xSix)2 compounds,” Phys. Met. Metallogr. 115, No. 12, 1276–1283 (2014).

    Article  CAS  Google Scholar 

  17. A. V. Vershinin, S. P. Naumov, V. V. Serikov, N. M. Kleinerman, N. V. Mushnikov, and V. S. Rusakov, “Hyperfine-interaction parameters and magnetic phase antiferromagnet–ferromagnet transition in Ce(Fe1 – xSix)2,” Phys. Met. Metallogr. 117, No. 12, 1185–1191 (2016).

    Article  CAS  Google Scholar 

  18. V. S. Rusakov, V. S. Pokatilov, T. V. Gubaidulina, and M. E. Matsnev, “Hyperfine magnetic fields at the nuclei of 57Fe in the intermetallic system Zr1 – xScxFe2,” Phys. Met. Metallogr. 120, No. 4, 339–344 (2019).

    Article  CAS  Google Scholar 

  19. M. E. Matsnev and V. S. Rusakov, “SpectrRelax: An application for Mössbauer spectra modeling and fitting,” AIP Conf. Proc. 1489, 178–185 (2012).

    Article  CAS  Google Scholar 

  20. S. P. Naumov, N. V. Mushnikov, P. B. Terentev, M. I. Oshtrakh, and N. M. Kleinerman, “On the nature of the magnetostructural phase transition in Ce(Fe1 – xSix)2,” J. Alloys Compd. 893, 162198-1-7 (2022).

    Article  Google Scholar 

  21. B. L. Ahuja, T. Ramesh, B. K. Sharma, P. Chaddah, S. B. Roy, Y. Kakutani, A. Koizumi, N. Hiraoka, M. Toutani, N. Sakai, Y. Sakurai, and M. Itou, “Temperature-dependent magnetic Compton scattering study of spin moments in Ce(Fe0.96Ru0.04)2,” Phys. Rev. B 66, 012411-1-4 (2002).

    Article  Google Scholar 

  22. B. L. Ahuja, B. K. Sharma, V. Purvia, S. Tiwari, A. Koizumi, T. Nagao, Y. Sakurai, and N. Sakai, “Spin dependent Compton scattering study of magnetic transitions in Ir doped CeFe2,” J. Appl. Phys. 108, 043902-1-5 (2010).

    Article  Google Scholar 

  23. E. G. Gerasimov, N. V. Mushnikov, P. B. Terentev, V. S. Gaviko, and A. A. Inishev, “Magnetic properties of the off-stoichiometric GdNi2Mnx alloys,” J. Alloys Compd. 571, 132–137 (2013).

    Article  CAS  Google Scholar 

  24. A. Gschneidner, V. K. Pecharsky, and A. O. Tsokol, “Recent developments in magnetocaloric materials,” Rep. Prog. Phys. 68, No. 6, 1479–1539 (2005).

    Article  CAS  Google Scholar 

  25. D. H. Wang, S. L. Tang, H. D. Liu, W. L. Gao, and Y. W. Du, “Large low-field magnetic entropy change in DyCo2,” Intermetallics 10, No. 8, 819–821 (2002).

    Article  CAS  Google Scholar 

  26. A. Haldar, K. G. Suresh, and A. K. Nigam, “Magnetic and magnetocaloric properties of Ce1 – xRxFe2 and Ce(Fe1 – xMx)2 compounds,” J. Phys. D: Appl. Phys. 43, No. 28, 285004-1-6 (2010).

    Article  Google Scholar 

Download references


Structural attestation of the samples, magnetic and Mossbauer measurements were carried out in the Collaborative Access Center of the Institute of Metal Physics, Ural Branch, RAS. The study was performed in terms of state assignment of the Ministry of Science and Higher Education of the Russian Federation on theme Magnet (no. АААА-А18-118020290129-5) and in part was supported by the Russian Foundation for Basic Research and government of Sverdlovsk region (project no. 20-42-660008).

Author information

Authors and Affiliations


Corresponding author

Correspondence to S. P. Naumov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Kolchugina

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Naumov, S.P., Mushnikov, N.V., Terentev, P.B. et al. Magnetic Properties and Local Atomic Ordering in Ce(Fe1 – xSix)2 Compounds with a Silicon Content x ≤ 0.05. Phys. Metals Metallogr. 123, 552–558 (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • cubic Laves phase
  • rare-earth intermetallics
  • magnetic susceptibility
  • magnetization
  • magnetocaloric effect
  • Mössbauer spectroscopy